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[1] Climate impact analyses are usually based on driving hydrological models by future
climate scenarios, assuming that the model parameters calibrated to past runoff are
representative of the future. In this paper we calibrate the parameters of a conceptual
rainfall-runoff model to six consecutive 5 year periods between 1976 and 2006 for 273
catchments in Austria and analyze the temporal change of the calibrated parameters. The
calibrated parameters representing snow and soil moisture processes show significant
trends. For example, the parameter controlling runoff generation doubled, on average, in the
3 decades. Comparisons of different subregions, comparisons with independent data sets,
and analyses of the spatial variability of the model parameters indicate that these trends
represent hydrological changes rather than calibration artifacts. The trends can be related to
changes in the climatic conditions of the catchments such as higher evapotranspiration and
drier catchment conditions in the more recent years. The simulations suggest that the impact
on simulated runoff of assuming time invariant parameters can be very significant. For
example, if using the parameters calibrated to 1976– 1981 for simulating runoff for the
period 2001 –2006, the biases of median flows are, on average, 15% and the biases of high
flows are about 35%. The errors increase as the time lag between the simulation and
calibration periods increases. The implications for hydrologic prediction in general and
climate impact analyses in particular are discussed.
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1. Introduction
[2] Climate change impacts on water resources are usu-

ally analyzed by a scenario approach which consists of four
steps: (1) choosing one or more climate change scenarios
of global circulation models (GCMs), (2) downscaling the
GCM output to the scale of interest, (3) running a hydrolog-
ical model using the downscaled GCM output, and (4) com-
paring the model simulations for the current and scenario
climates to analyze the impacts [Bergström et al., 2001].
Each of these steps involves various sources of uncertainty.
Kay et al. [2009] suggested that for their UK catchments,
GCM structure was the largest source of uncertainty for sim-
ulating floods, followed by emission scenarios and hydrolog-
ical modeling. Wilby and Harris [2006] found similar results
for low flows. This is hardly surprising as GCM results of
future climate cannot be validated against data. However, as
pointed out by Blöschl et al. [2007] and Blöschl and Monta-
nari [2010], the relative magnitudes of the hydrological
model errors will depend on the time and space scales
involved and may potentially be very significant.

[3] One particular concern with the hydrological model-
ing in impact analyses is the model parameters. The general
idea of parameters in dynamic models is that they represent
the stable catchment conditions while the rainfall and other
inputs are the time-varying boundary conditions. Ideally,
one would like to measure the model parameters in the
field, but as has been exhaustively discussed in the litera-
ture, a fully reductionist approach of using parameter val-
ues observed in the field without any calibration for
hydrological predictions has many limitations, so in most
cases, some level of model calibration will be useful to
reduce bias [e.g., Beven, 2000]. Because of the general
modeling idea of parameters representing stable catchment
conditions, one would hope that calibrated model parame-
ters are not sensitive to the change in climatic conditions.
However, if climate conditions change, there are several
reasons that model parameters may potentially change as
well. First, calibration parameters tend to compensate
model structure problems and data problems and hence
may change for different calibration periods. Wagener
et al. [2003] estimated the parameters of a rainfall-runoff
model for different parts of the hydrograph by dynamic
identifiability analysis (DYNIA). They found that some of
the parameters (such as the maximum soil moisture storage
capacity (CMAX)) significantly changed for periods with
and without rainfall events. There were periods when the
estimated CMAX value was around 100, but when there
was a significant hydrograph response following a dry pe-
riod, CMAX was around 500. They attributed these
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changes to problems with the model structure. Juston et al.
[2009], in contrast, reported that using weekly, monthly,
and quarterly subperiods of the data for calibration yielded
similar parameters as the full 3 year period.

[4] A second reason for temporal change in calibration
parameters may be that some of the model parameters
indeed represent transient catchment conditions. For exam-
ple, changes in the land use may result in changes in the
model parameters [Brown et al., 2005; Andréassian et al.,
2003]. However, trends in the calibrated model parameters
may potentially also be related to climate fluctuations. One
example in event-based runoff models is the runoff coeffi-
cient. As soil moisture changes in response to climate var-
iations, the runoff coefficients will also change [Merz et al.,
2006; Merz and Blöschl, 2009a]. There are similar parame-
ters in continuous runoff models related to runoff genera-
tion that may also vary in response to climate fluctuations.
However, just how calibrated model parameters change
with time is currently not very well understood [Wagener
et al., 2010]. In order to account for any changes in the pa-
rameters caused by changes in the catchment characteris-
tics, a unique relationship between the two would be
needed, but often, there are complex correlations among
the parameters and with various catchment characteristics
[Wagener, 2007]. It is therefore not straightforward to
account for temporal changes in the model parameters, and
in most impact analyses it is simply assumed that the model
parameters do not change with time. This assumption may
produce large errors in simulated runoff if climate and/or
catchment conditions change much with time. Wilby
[2005], for example, found that the uncertainty in projected
river flow changes due to the choice of calibration period
was similar to the uncertainty due to future greenhouse gas
emission scenarios. Lubès-Niel et al. [2003] analyzed 17
catchments in Africa where rainfall and runoff significantly
decreased over the years. They calibrated a conceptual
rainfall-runoff model to different time periods and analyzed
the time trends of the calibrated model parameters. In about
two thirds of the catchments, the parameters were time sta-
ble. In the other catchments they did change with time, but
there were no obvious relationships between the parameter
trends and the climate trend. The issue of identifying and
understanding the time stability of catchment model param-
eters is therefore far from resolved.

[5] The aim of this paper is to analyze the temporal sta-
bility of the parameters of a conceptual rainfall-runoff
model and assess the implications for climate impact analy-
ses. Specifically, we address the following research ques-
tions: (1) Are there trends in the parameter values when
calibrating them to different time periods, and can this trend
be interpreted in terms of changes in climate? (2) What
errors in the estimates of future runoff will be incurred when
assuming that the model parameters are time stable, i.e.,
when using the parameters from the past for predicting run-
off in future decades?

[6] We calibrate a semidistributed conceptual rainfall-run-
off model to runoff data from 273 Austrian catchments for
different 5 year periods between 1976 and 2006 during which
the climatic variables have substantially changed. We then
analyze the time trends of the calibrated parameters and esti-
mate what are the effects on low, medium, and high flows of
assuming that the model parameters do not change with time.

2. Data and Study Region
2.1. Study Region and Data Set

[7] This study was carried out in Austria using data from
the period 1976 –2006. Austria is flat or undulating in the
east and north and alpine in the west and south. Elevations
range from 115 to 3797 m above sea level. Land use is
mainly agricultural in the lowlands and forest in the me-
dium elevation ranges. Alpine vegetation and rocks prevail
in the highest catchments. The Austrian climate is domi-
nated by the Alps as a barrier of continental climate in the
north, in which humid westerly winds prevail, and
the influence of weather patterns from the Adriatic Sea in
the south. Along the rim of the high Alps, mean annual pre-
cipitation is almost 3000 mm/yr, which is due to orographic
effects. In the inner alpine regions, mean annual precipita-
tion is much lower, and the interannual hydrological varia-
tion is dominated by snow accumulation and melt. The
lowest precipitation of less than 400 mm/yr occurs in the
eastern flatlands, which are in the Pannonian climate zone,
with warm and dry summers and cold winters without sig-
nificant snowfall. The data set used in this study includes
measurements of daily precipitation and snow depths at
1091 stations [Weilguni, 2003; Gattermayr et al., 2003]
and daily air temperatures at 212 climatic stations [Auer
and Böhm, 2003]. The precipitation data were checked for
time trends in the measurement errors by comparing them
against the Histalp data set [Auer et al., 2007], and no sig-
nificant biases were found in the regional trends. Daily run-
off data from 273 gauged catchments were used with areas
ranging from 10 to 130,000 km2 and a median of 243 km2.
All discharge data had been screened in previous studies
[Merz and Blöschl, 2004; Parajka et al., 2007b; Merz et al.,
2008, 2009], and catchments with anthropogenic impacts
such as dams were not included in the data set. Water with-
drawals do not have any significant effects in the catchments
used here.

[8] The climatic data time series for the analyses in this
paper were prepared in two steps. First, the daily values of
precipitation, snow depth, and air temperature were spa-
tially interpolated by methods that use elevation as auxil-
iary information. External drift kriging was used for
precipitation and snow depth, and the least squares trend
prediction method was used for air temperature [Pebesma,
2001]. The spatial distribution of potential evapotranspira-
tion was estimated by a modified Blaney-Criddle method
[Parajka et al., 2005] using daily air temperature and
potential sunshine duration calculated by the Solei-32
model that incorporates shading by surrounding terrain
[Mészáro�s et al., 2002]. In a second step, all catchments
were subdivided into 200 m elevation zones. Time series of
daily precipitation, air temperature, potential evapotranspi-
ration, and snow cover were then calculated for each of the
elevation zones to be used in the water balance simulations.
If the average snow depth within a zone was greater than
5 cm, the zone was considered to be snow covered; other-
wise, it was considered to be snow free. The choice of the
5 cm threshold was based on the analyses of Parajka and
Blöschl [2008]. All the analyses in this paper were carried
out for the set of 273 catchments to span a wide variety of
catchment types. To assist in the interpretations, the Aus-
trian catchments were classified by the long-term ratio of
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potential evapotranspiration and precipitation used in the
Budyko curves [Budyko, 1974]. According to Budyko,
catchments with a ratio larger than unity are termed water
limited or arid, while catchments with a ratio smaller than
unity are termed energy limited or humid. In Austria most
catchments are energy limited [see, e.g., Merz and Blöschl,
2009a, Figure 3]. To help make the results of the study trans-
ferable to other climatic regions, the analyses in this paper
are given for the entire set of catchments and for two sub-
classes with a ratio of potential evapotranspiration and pre-
cipitation larger than 0.6 (termed ‘‘drier’’ catchments) and a
ratio less than 0.35 (termed ‘‘wetter’’ catchments). Out of
the 273 catchments, 80 were classified as wetter catchments,
and 48 were classified as drier catchments. The drier catch-
ments are mainly located in the flat regions in the east of
Austria, while the wetter catchments are mainly located in
the Alps (Figure 1). The thresholds of 0.35 and 0.6 were cho-
sen as a compromise between balancing the number of
catchments in the groups and making the <0.35 and [mt]0.6
groups clearly different with respect to the Budyko curve.

2.2. Evolution of Climate Conditions

[9] To help interpret the temporal stability of model
parameters, the climatic variations in the period 1976 to
2006 were analyzed in a first step. Figure 2 shows the an-
nual mean values of catchment precipitation P, air tempera-
ture, potential evapotranspiration, specific runoff Q (i.e.,
runoff divided by catchment area), the ratio of runoff and
catchment precipitation Q/P, and the fraction of catchment
area covered by snow. The black lines are the averages
over the 273 catchments. The grey solid and grey dashed
lines are the averages over the wetter catchments and the
drier catchments, respectively. The average annual precipi-
tation over all Austrian catchments varies from 1280 to
1360 mm/yr and has slightly increased over the 3 decades.

There are large differences between the drier and wetter
catchments, but the spatial average tends to increase for all
catchment groups. For the drier catchments, the spatial av-
erage has increased from 820 to 920 mm/yr, while for the
wetter catchments, the spatial average has increased from
1550 to 1650 mm/yr. The air temperature trends are even
more pronounced. Between 1976 and 2006, mean annual
air temperatures have increased by almost 2�C, on average,
for all the catchments. The increase is slightly larger for the
wetter catchments (from 2�C to 4.5�C) and smaller for the
drier catchments (7.4�C –8.6�C). The air temperature
increase in the European Alps in the past 3 decades has, in
fact, been twice the average in the Northern Hemisphere
[Auer et al., 2007]. Interestingly, the interannual variability
of air temperature has decreased in the last decades [Auer
et al., 2007]. Potential evapotranspiration (estimated from
air temperature, Figure 2) has increased from about 530 to
570 mm/yr within the period 1976 – 2006 (averages over all
Austrian catchments).

[10] No temporal trend in the mean annual runoff Q is
apparent in Figure 2. This applies to the average of all
catchments as well as the wetter and drier subregions. The
increase in precipitation over the last decades seems to
have been compensated by an increase in evapotranspira-
tion, so runoff remained rather constant. This is a very im-
portant finding, as impact studies would usually predict an
increase in runoff for an increase in precipitation as shown
in Figure 2 (top left), but this was apparently not the case.
The average runoff of the drier catchments is only about a
quarter of that in the wetter catchments, but the time pat-
terns are similar. Q95 low flows (the discharge exceeded
95% of the time) and Q5 high-flow quantiles (the discharge
exceeded 5% of the time) do not show time trends either.
Because of the trend in precipitation and lack of trend in
runoff, the ratio of Q/P shows a decreasing trend (Figure 2).

Figure 1. Location of the catchment outlets and classification into drier catchments (white), wetter
catchments (black), and medium catchments (grey) depending on the ratio of potential evapotranspira-
tion and precipitation.
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The average fraction of the catchment area covered by snow
is much lower in the drier catchments than in the wetter
catchments as the former are located in the lowlands while
the latter are in the Alps. There is a small but consistent
decrease in snow cover over the decades that is likely related
to the increasing mean air temperatures.

3. Model and Methodology
3.1. Model Structure

[11] The model used in this paper is a semidistributed
conceptual rainfall-runoff model with a structure similar to
the Hydrologiska Byråns Vattenbalansavdelning (HBV)
model [Bergström, 1995]. The model equations are given
in the appendix of Parajka et al. [2007a]. The snow routine
represents snow accumulation and melt by a simple degree-
day concept, involving the degree-day factor DDF and melt
temperature TM. Catch deficit of the precipitation gauges
during snowfall is corrected by a snow correction factor
SCF. If air temperature is above a threshold temperature
TR, precipitation is considered to occur as rainfall ; below a
threshold temperature TS, it is considered to occur as snow-
fall, and it is a mix of rain and snow in between. The soil
moisture routine represents runoff generation and changes
in the soil moisture state of the catchment and involves
three parameters : the maximum soil moisture storage FC, a
parameter representing the soil moisture state above which
evapotranspiration is at its potential rate, termed the limit
for potential evapotranspiration LP, and a parameter in the
nonlinear function relating runoff generation to the soil
moisture state, termed the nonlinearity parameter B. If B is
large, a small amount of rainfall contributes directly to run-
off during an event. Conversely, if B is small, direct runoff
is large. Runoff routing on the hillslopes is represented by an
upper and a lower soil reservoir. Excess rainfall enters the
upper zone reservoir and leaves this reservoir through three
paths: outflow from the reservoir (which may be interpreted
as interflow) based on a fast storage coefficient K1 ; perco-

lation to the lower zone with a constant percolation rate
CP ; and, if a threshold of the storage state LSUZ is
exceeded, an additional outlet (which may be interpreted as
overland flow) based on a very fast storage coefficient K0.
Water leaves the lower zone based on a slow storage coeffi-
cient K2. The outflow from both reservoirs is then routed by
a triangular transfer function representing runoff routing in
the streams, where the base of the transfer function is related
to the outflow by a free calibration parameter CR.

[12] The model was run for all 273 gauged catchments in
Austria. Time step is 1 day. Each catchment was subdivided
into elevation zones of 200 m vertical range. Daily inputs
(precipitation, air temperature, and potential evapotranspira-
tion) were allowed to vary with elevation within a catch-
ment, and the soil moisture accounting and snow accounting
were performed independently in each elevation zone. How-
ever, the same model parameters were assumed to apply
to all elevation zones of a catchment. In order to reduce
the number of calibrated model parameters, Parajka et al.
[2007b] performed a sensitivity analysis for Austrian catch-
ments (including most of the catchments of this study) which
showed that the results were sensitive to many of the model
parameters in some catchments but insensitive in others.
Three parameters that were among those that generally
showed the least sensitivity were preset (TR ¼ 2�C, TS ¼
0�C, CR ¼ 25 d2/mm) and 11 parameters (Table 1) were esti-
mated by calibration.

3.2. Model Calibration and Verification

[13] To analyze the time stability of the model parame-
ters, we calibrated the model parameters to observed runoff
for six consecutive 5 year periods between 1976 and 2006.

[14] The calibration makes use of an objective function
that involves the Nash and Sutcliffe efficiency ME of run-
off and the Nash and Sutcliffe efficiencies of logarithmic
runoff MEln. In calibration procedures, the parameter val-
ues are usually bounded between two limits [Duan et al.,
1992], and otherwise, no a priori assumptions are made

Figure 2. Five year mean annual values of climatic variables averaged over the 273 Austrian catch-
ments (black lines), averaged over the wetter catchments (solid grey lines), and averaged over the drier
catchments (dashed grey lines).
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about the parameters. This implies that the a priori distribu-
tion of the parameters is a uniform distribution. We believe
that it is possible to make a more informed guess about the
shape of the a priori distribution and introduced a penalty
function "P based on a Beta distribution for each parameter:

"p ¼
Xk

j¼1

fmax; j � fj pj�pl; j

pu; j�pl; j

� �
fmax; j

;

fmax; j ¼ fj
pmax; j � pl; j

pu; j � pl; j

� �
;

ð1Þ

where pj is the value of the model parameter j to be cali-
brated, pl and pu are the lower and upper bounds of the
parameter space, pmax is the parameter value at which the
Beta distribution is at a maximum, and k is the number of
parameters to be calibrated. Here f is the probability density
function of the Beta function:

f ðx �; �j Þ ¼ 1

Betað�; �Þ x
��1ð1� xÞ��1

0 < x < 1; � > 0; � > 0;
ð2Þ

with

Betað�; �Þ ¼
Z1

0

x��1ð1� xÞ��1dx ¼ �ð�Þ�ð�Þ
�ð�þ �Þ :

[15] We assumed values of a and � for each parameter k
on the basis of prior analyses of the distribution of parameter
values from different calibration studies [Merz and Blöschl,
2004; Parajka et al., 2007a] (Table 1). We chose the lower
and upper bounds of the parameters on the basis of literature
values [Bergström, 1995; Seibert, 1997] and our own assess-
ment. The bounds were the same for all catchments (Table 1).

[16] The entire objective function now consists of the
following parts:

Z ¼ w1ð1�MEÞ þ w2ð1�MElnÞ þ w3"p : ð3Þ

[17] The weights wi represent the trade-off between
the goodness of fit to runoff and the a priori parameter
distributions. To assist in the choice of weights, sensitiv-
ity analyses were performed that showed that the model

results were only moderately sensitive to the choice of
weights. On the basis of our prior experience with hydro-
logical modeling in Austria [Merz et al., 2009] we set
the weights to w1 ¼ 0.4, w2 ¼ 0.4, and w3 ¼ 0.2, which
gives a relative importance of 80% to matching the run-
off data and 20% to respecting the a priori distribution of
the model parameters. This is because, on average, over
the 273 catchments, the sum of the two first terms in
equation (3) is similar to the third term. This objective
function was minimized using the shuffled complex evo-
lution (SCE-UA) method [Duan et al., 1992]. Model pa-
rameters were calibrated to runoff from 1 November to
31 October for each calibration period. Warm-up periods
from January to October were used in all calibrations.

[18] Model performance was judged by comparing simu-
lated and observed runoff in terms of the model efficiencies
ME for each verification period that was not used for cali-
bration. The second measure of model performance used
here is the volume error VE, which is a measure of bias and
is defined as

VE ¼

Pn
i¼1

Qsim;i �
Pn
i¼1

Qobs;i

Pn
i¼1

Qobs;i

: ð4Þ

[19] VE ¼ 0 implies no bias, and values larger and
smaller than 0 imply an overestimation and an underesti-
mation of the total runoff volume, respectively.

[20] In Figure 3 (top left) the spatial mean of the Nash
Sutcliffe efficiencies ME of the 273 catchments calibrated
to consecutive 5 year periods are plotted against the period
of calibration. The spatial mean of ME of all catchments
varies between 0.74 and 0.77 for the 5 year periods, but no
trend is apparent. This means that the model parameters
can be calibrated equally well to each period. In most cali-
bration periods, the mean Nash Sutcliffe efficiencies of the
drier catchments are smaller than those of all catchments.
Most of the drier catchments are located in the flatlands of
northeastern Austria, where the runoff regime is rainfall
dominated. In contrast, most of the wetter catchments are
located in the alpine western part of Austria, where the
runoff regime is snow dominated. Merz et al. [2009] and
T. Nester et al. (Climate and catchment controls on the
performance of regional flood simulations, submitted to
Journal of Hydrology, 2010) showed that catchments with a

Table 1. A Priori Distribution of Parameter Valuesa

Model Parameter j Definition Model Component pl pu � � pmax

SCF snow correction factor (dimensionless) snow 1.0 1.5 1.2 4.0 1.03
DDF degree-day factor (mm/�C day) snow 0.0 5.0 2.0 4.0 1.25
TM melt temperature (�C day) snow �1.0 3.0 2 4 0.0
FC maximum soil moisture storage (mm) soil 0.0 600 1.1 1.5 100
LP/FC ratio of limit for potential evapotranspiration and FC (dimensionless) soil 0.0 1.0 4.0 1.2 0.94
B nonlinearity parameter of runoff generation (dimensionless) soil 0.0 20 1.1 1.5 3.4
K0 storage coefficient of additional outlet (days) runoff 0.0 2.0 2.0 4.0 0.5
K1 fast storage coefficient (days) runoff 2.0 30 2.0 4.0 9.0
K2 slow storage coefficient (days) runoff 30 250 1.05 1.05 105
LSUZ storage capacity threshold (mm) runoff 1.0 100 3.0 3.0 50
CP percolation rate (mm/d) runoff 0.0 8.0 2.0 4.0 2.0

aParameters pl and pu are the lower and upper bounds of the parameter space used in all iterations, u and v are the initial parameters of the a priori distri-
bution (equation (3)), and pmax is the initial parameter value at which the a priori distribution is at a maximum.
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snow-dominated regime can be much better modeled than
catchments with a rainfall-dominated regime because of the
stronger seasonality and differences in the space and time
scales of the rainfall regime. In Figure 3 (top right), the
model efficiencies for the verification periods are plotted.
Each parameter set of a 5 year calibration period was veri-
fied against the five remaining 5 year periods, and the aver-
age of the spatial mean of the remaining periods is shown.
For example, the first segment of the thick black line in Fig-
ure 3 (top right) (ME ¼ 0.68) shows the average spatial
mean of the model efficiencies from the parameter set cali-
brated to the runoff in 1976–1981 and verified against the
runoff in 1982–2006. Because of the averaging of five verifi-
cation periods, the variability between the periods is smaller
than for the calibration. The spatial mean of the verification
ME varies between 0.64 and 0.69 when averaged over all
catchments, and there is a slight trend. For the dry catchments
there is a clear trend of decreasing efficiencies with time.

[21] The volume errors of the calibration case (Figure 3,
bottom left) are, on average, smaller than 6%. Their magni-
tudes decrease slightly over the three decades. However, in
the verification case, there is a very significant trend. The
verification volume errors are about �12% when using
model parameters calibrated to the most recent periods.
This means that parameters from the recent warm years sig-
nificantly underestimate runoff in the other years. The con-
verse is true when using the parameters from the late
1970s, although the overestimation is much smaller.

[22] In this paper we are interested in the temporal
changes in model parameters and their effects on simulated
runoff in typical applications of conceptual hydrological

models. The model used here is among the most widely
used soil moisture accounting schemes in the literature.
The calibration procedure and performance measures are
those used in numerous studies. Also, the model efficiencies
found in this paper are similar to studies in the literature that
are based on a similar number of catchments [see, e.g.,
Oudin et al., 2008; Perrin et al., 2001, 2008]. Merz et al.
[2009] suggested that a minimum calibration period of
5 years is needed for this type of model, so we do not expect
any overcalibration. We therefore believe that the model can
be used for the time stability analysis in this paper.

4. Results
4.1. Time Stability of Model Parameters

[23] To analyze the general temporal behavior, the spa-
tial averages of the model parameters for all catchments
under study were analyzed. Figure 4 shows the spatial aver-
age of the snow correction factor SCF, the degree-day fac-
tor DDF, the maximum soil moisture storage FC, and the
nonlinearity parameter B plotted against the calibration pe-
riod. There are significant time trends. The snow correction
factor SCF decreases with time. In the recent warmer years,
less precipitation falls as snow, so one would expect the
catch deficit of the precipitation gauges during snowfall to
be smaller, which explains the decreasing trend of SCF.
The degree-day factor DDF also tends to decrease with
time. The average DDF in all catchments, calibrated to run-
off data from the late 1970s, is about 1.8, while it is about
1.65 if calibrated to the most recent period. A possible
interpretation of this is that the snowpacks, accumulated in

Figure 3. Nash-Sutcliffe model efficiencies (ME) and volume errors (VE) for 5 year calibration and
verification periods averaged over the 273 Austrian catchments (black lines), averaged over the wetter
catchments (solid grey lines), and averaged over the drier catchments (dashed grey lines). For the verifi-
cation case, the mean ME and VE of the five remaining 5 year verification periods are plotted on the
5 year period used for calibration.
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the winter, tend to be larger in the colder years and snow
melt starts later in spring. Rain-on-snow events are more
likely, and more radiation is available for melting snow and
ice. The melt rates (relative to air temperature) then tend to
be larger, which explains the larger DDF in the late 1970s.
No trend in the DDF values is found for the drier catch-
ments, although the mean values vary strongly between the
different periods. The runoff regimes in the drier catch-
ments, which are mainly located in the flatter eastern part
of Austria, are rainfall dominated, and rain-on-snow events
are less frequent. The occurrence of single rain-on-snow
events in the different calibration periods therefore influen-
ces the calibrated DDF values, which increases the
observed temporal variability of DDF. The average values
of the maximum soil moisture storage capacity FC strongly
increase with time. Evapotranspiration would be expected
to increase because of the significant increase in air temper-
atures. The interpretation of this is that the soils tend to be
drier, and on average, more water can be stored in the soils.
This is reflected by larger calibration values of FC in the
more recent warmer years. Similarly, the nonlinearity
parameter B increases with time. B doubles from about 3 to
almost 6 in the 3 decades. This increase is apparently
related to more linear runoff generation and a lower frac-
tion of rain that becomes runoff in the more recent years
(Figure 2). This is plausible as the drier catchments have
larger values of B (Figure 4), so as the catchments get
slowly drier, B increases. The spatial coefficients of varia-
tions of the four model parameters are around 0.15, 0.3,
0.6, and 1.1 (not shown here) and do not change much in
time. Also, the trends are consistent between all three
catchment groups in Figure 4. This suggests that the trends

of the spatial averages shown in Figure 4 are representing
changes in the hydrological conditions, taking place in
most catchments, and are not an artifact of parameter
uncertainty due to calibration. The other parameters (TM
and LSUZ) do not show any significant temporal trend (not
shown here), while the parameter LP describing the limit
for potential evaporation slightly decreases with time. The
latter trend is related to increases in the evapotranspiration
over the years.

[24] It is now of interest to understand whether these
trends can be explained by climatic variability. For each
catchment, the temporal correlation between the calibrated
model parameters and one of a number of hydroclimatic
indicators was estimated, each of them representative of
one 5 year period. This means that six data points were
used in each regression. As the model parameters and the
climate indicators of the six calibration periods are not nec-
essarily normally distributed, the Spearman rank correla-
tion coefficient rs was used here to measure the dependence
of the model parameters on the climate indicators :

rs ¼ 1�
6
Pn
i¼1

d2
i

nðn2 � 1Þ ; di ¼ rkðxiÞ � rkðyiÞ; ð5Þ

where rk(xi) is the rank of xi, where the highest value has
rank 1 and the lowest value has rank n. Spearman’s rs

varies between �1 and 1, where �1 represents a completely
negative correlation and 1 represents a completely positive
correlation. Completely uncorrelated pairs of data have a
Spearman’s rs of 0. The spatial variability of these temporal
correlation coefficients was then plotted as Box-Whisker

Figure 4. Model parameters (snow correction factor SCF, degree-day factor DDF, maximum soil
moisture storage FC, and nonlinearity parameter of runoff generation B) of the 5 year calibration periods
averaged over the 273 Austrian catchments (black lines), averaged over the wetter catchments (solid
grey lines), and averaged over the drier catchments (dashed grey lines).
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plots in Figure 5. The hydroclimatic indicators are mean an-
nual precipitation (P), mean annual air temperature (Temp),
mean annual potential evapotranspiration (PET), mean an-
nual runoff (Q), and the mean annual ratio of runoff and pre-
cipitation (Q/P). On average, the snow correction factor SCF
is negatively correlated to the mean annual values of precipi-
tation, temperature, and PET, with correlation coefficients of
�0.25 to �0.5, and positively correlated to Q and Q/P, with
correlation coefficients of up to 0.6. A similar trend of a neg-
ative correlation to precipitation, air temperature, and PET
and a positive correlation to Q and Q/P occurs for the
degree-day factor, while the trend is opposite for the maxi-
mum soil moisture storage capacity FC and the nonlinearity
parameter B. The spatial median of the correlation coeffi-
cients of FC and B to precipitation is around 0.3, while it is
around 0.5 for air temperature and potential evapotranspira-
tion. It is interesting that FC and B are positively correlated
to precipitation. This is because of the increasing trend in
precipitation (Figure 2), which corresponds to the increasing
trends in FC and B.

[25] There is a large variability in the correlations between
the catchments for the same parameter–climate indicator
combinations. This large variability may be partly related to
parameter identifiability issues [Beven and Binley, 1992;
Montanari, 2005]. The large variability may also be related
to differences in the hydrological processes in the catch-
ments. For example, for most catchments the B parameter is
positively correlated with air temperatures because warmer
years have less runoff because of increased evapotranspira-
tion. However, there are some catchments where the correla-
tions are negative. These are mostly catchments in the alpine
parts of Austria where snow or glaciers play an important

role. In these catchments, years with above-average air tem-
peratures are associated with above-average runoff, which
then translates into negative correlations between air tem-
perature and B. Overall, the grey range (25% – 75% quan-
tiles) of most of the Box-Whisker plots in Figure 5 is
either completely positive or negative, suggesting that most
model parameters are indeed meaningfully correlated to the
climate indicators.

[26] To provide more insight into the plausibility of the
temporal trends of the model parameters, independent data
sets were analyzed. In Figure 6 (top) the average calibrated
DDF and the average percentage of rain-on-snow days are
plotted against the calibration period. A day was considered
a rain-on-snow day when more than 30% of the catchment
area was covered by snow (as estimated by the snow depth
data), air temperature was above 1�C, and precipitation was
more than 1 mm/d. The percentage of rain-on-snow days is
therefore information independent of the model results.
The percentage of rain-on-snow days tends to decrease in
the warmer, more recent, periods, which is consistent with
the decrease of the DDF, as one would expect larger DDF
on rain-on-snow days than on sunny days because of the
latent heat and long wave radiation. For the drier catch-
ments (Figure 6, top right) the trends are not consistent, but
here the DDF is not well defined as there is little snow in
these catchments.

[27] The change in runoff generation over the years,
indicated by a trend in the B values of the model, is com-
pared with an independent analysis of event runoff coeffi-
cients. Merz et al. [2006] back calculated event runoff
coefficients from hourly runoff data, hourly precipitation
data, and estimates of snowmelt. This means their analysis

Figure 5. Spearman rank correlation coefficients (temporal correlations) between model parameters
and climatic indicators for the six 5 year calibration periods, given separately for each catchment. The
Box-Whisker plots show the spatial minimum, maximum, median, lower quartile, and upper quartile of
the 273 Austrian catchments.
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is different from the one in this paper in terms of the model
used (event model versus continuous model) and in terms
of the time scale of the data (hourly versus daily). In this
paper we adopted the methodology of Merz et al. [2006] to
estimate event runoff coefficients for a total of 39,700
events in the period 1976 to 2006 and averaged them for
the same 5 year periods used here. The mean event runoff
coefficient (Figure 6) decreases from 0.42 for the period
1976 –1981 to 0.38 for the period 2001 – 2006 for all catch-
ments under study, while the mean B value increased from
3.2 to 5.2. The interpretation of this is that, due to increasing
mean air temperatures, evapotranspiration has increased and
catchments have become drier. More rainfall can be stored in
the soils, so a smaller portion of rainfall contributes to direct
runoff. The model accounts for this change in runoff genera-
tion by a change in the calibrated values of the B parameter.

[28] The spatial mean of four routing parameters, the
three storage coefficients K0, K1, and K2 and the parameter
CP controlling the percolation to the lower zone, are plotted
against the period of calibration in Figure 7. K1 and CP

slightly decrease, while for K0 and K2 no trend is apparent.
The decrease in K1 implies that the hillslope runoff
response has slightly accelerated in recent years (9.5 as
opposed to 11 days). The decrease in CP in the most recent
period implies that the groundwater recharge has decreased
(1.5 as opposed to 2 mm/d), which is consistent with the
lower catchment soil moisture to be expected in a warmer
climate. The spatial coefficient of variation of the routing
parameters is around 0.26, 0.3, 0.45, and 0.4 (not shown
here) and does not change much in time, which indicates
that the trends of the spatial averages in Figure 7 are con-
sistent for most catchments.

[29] The spatial medians of the correlation coefficients
between the routing parameters and the climate indicators
vary from �0.25 to 0.1 (Figure 8). These are much smaller

values than those for the four soil moisture parameters,
which have values of up to 0.6 (Figure 5). While the param-
eters of the soil moisture routine are obviously linked to
changes in soil moisture over the last 30 years, driven by
climate, the relationships for the routing parameters are
less clear. This would be expected, as runoff routing is
mainly controlled by the topography, the river network, ge-
ology, and soil type and, to a lesser degree, by the soil
moisture state.

4.2. Trading Space for Time

[30] It is interesting to link the temporal relationship
between model parameters and climatic forcing to the spa-
tial variability of the model parameters for a given time pe-
riod. If the increase in, e.g., B values for the last 30 years is
caused by higher air temperatures, a similar change of the
B values should be found in space if one moves from cold
to warm catchments for the same time period. This is the
idea of trading space for time. To analyze this, the spatial
Spearman rank correlation coefficients of the model param-
eters and climate indicators were calculated for each of the
six calibration periods separately, and the temporal vari-
ability over the six periods is given as Box-Whisker plots
in Figures 9 and 10. Furthermore, to provide a general idea
of the controls on the model parameters, the spatial correla-
tion coefficients between model parameters and catchment
attributes that do not change with time are also given. Merz
and Blöschl [2009b] term this type of catchment attributes
‘‘static’’ to reflect their temporal stability within the time
scale of the analysis. There are, of course, longer-term inter-
actions of climate and these catchment characteristics related
to landform and soil evolution [Merz and Blöschl, 2008a,
2008b], but they are considered small for the 30 years con-
sidered here. The static catchment attributes are catchment
area, mean elevation, river network density (RND), average

Figure 6. (top left) Degree-day factor (DDF; black solid line) for 5 year calibration periods and
observed percent rain-on-snow days (dashed line) of the corresponding period averaged over all catch-
ments. (bottom left) Nonlinearity parameter of runoff generation (B ; black solid line) for 5 year calibra-
tion periods and observed mean event runoff coefficients (rc; dashed line) of the corresponding period
averaged over all catchments. (middle and right) Corresponding graphs for the wetter and drier catch-
ments. Note that the rain-on-snow days and the runoff coefficients are information independent of the
model simulations.
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topographic slope, and, as the forested area has only slightly
increased in the last decades [Jonas et al., 1998], percent
forest cover.

[31] For most model parameters and climate indicators
the spatial correlation coefficients are, on average, in a
range similar to or slightly higher than the temporal
correlation coefficients. For example, the mean temporal

correlation coefficient between B and air temperature is
about 0.5 (Figure 5), while the mean spatial correlation
coefficient is about 0.7 (Figure 7). This may be attributed
to the larger range of climate indicators in space than in
time. The mean annual air temperatures have increased by
almost 2�C during the time period of this analysis, while
the mean annual air temperatures range from about 0�C in

Figure 7. Model parameters (storage coefficients K0, K1, and K2 and percolation rate Cp) of the 5 year
calibration periods averaged over the 273 Austrian catchments (black lines), averaged over the wetter
catchments (solid grey lines), and averaged over the drier catchments (dashed grey lines).

Figure 8. Spearman rank correlation coefficients (temporal correlations) between model parameters
and climatic indicators for the six 5 year calibration periods, given separately for each catchment. The
Box-Whisker plots show the spatial minimum, maximum, median, lower quartile, and upper quartile of
the 273 Austrian catchments.
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Figure 9. Spearman rank correlation coefficients (spatial correlations) between model parameters and
climatic indicators (and static catchment descriptors) for the 273 Austrian catchments, given separately
for each of the six 5 year calibration periods. The Box-Whisker plots show the temporal minimum, maxi-
mum, median, lower quartile, and upper quartile of the six 5 year calibration periods.

Figure 10. Spearman rank correlation coefficients (spatial correlations) between model parameters and
climatic indicators (and static catchment descriptors) for the 273 Austrian catchments, given separately
for each of the six 5 year calibration periods. The Box-Whisker plots show the temporal minimum, maxi-
mum, median, lower quartile, and upper quartile of the six 5 year calibration periods.
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the high Alps to more than 10�C in the eastern flatlands, i.e.,
a difference of more than 10�C. Similarly, mean annual pre-
cipitation has increased, on average, by about 100 mm/yr,
while the differences in space are more than 2500 mm/yr
(400 mm/yr in the east and 3000 mm/yr in the west). The
temporal variability of the spatial correlation coefficients is
rather small, i.e., the spatial correlations do not change much
between the six calibration periods. The main regional pat-
terns of the catchment characteristics are therefore repre-
sented rather well by the parameters. The distinct regional
patterns of the parameters in Austria are consistent with the
results of Merz and Blöschl [2004], who compared the cali-
brated parameters of two 11 year calibration periods for the
same catchments as here (their Figures 4–7). For example,
for both calibration periods, B values were high in the eastern
flatlands and low in the alpine environment of the west,
which is also borne out in the regional calibration of Parajka
et al. [2007b].

[32] The spatial correlations of SCF, DDF, and B with
most climate-related variables (air temperature, PET, runoff,
and runoff-rainfall ratio) are consistent with the correspond-
ing temporal correlations. SCF and DDF are negatively cor-
related with temperature and PET and positively correlated
with runoff and the runoff-rainfall ratio, both in the temporal
(Figure 5) and spatial (Figure 9) correlations. Similarly, B is
positively correlated with temperature and PET and nega-
tively correlated with runoff and the runoff-rainfall ratio,
both in the temporal (Figure 5) and spatial (Figure 9) corre-
lations. This lends additional credence to the interpretations
above. However, for some parameters and climate indicators
the temporal and spatial correlations are inconsistent, but at
least part of this inconsistency can be explained on hydrolog-
ical grounds. For example, the temporal correlation of FC
and air temperature is positive; that is, with increasing mean
air temperature in the more recent years, the maximum stor-
age capacity tends to increase. In warmer years, more soil
moisture evaporates, the soils are drier, and more water can
be stored, resulting in a higher maximum storage capacity.
In the spatial correlation analysis, FC and air temperature
are negatively correlated, meaning that FC tends to increase
as one moves to colder catchments. This negative correlation
can be explained by the regional pattern of FC [see, e.g.,
Merz and Blöschl, 2004, Figure 5]. In Austria, FC tends to
be high in the warm and dry flatlands of the east and in the
dry and cold inner-alpine catchments in the west. The lowest
FC values are found in the wet catchments at the northern
rim of the high Alps, where orographic effects enhance pre-
cipitation. The mean annual temperature of this region is
between those of the high Alps and the flatlands of the east.
As more inner-alpine catchments than warm flatland catch-
ments are included in the spatial analysis, the correlation of
FC and temperature is negative. A similar reasoning may
explain the differences in the correlations of other parame-
ters and other climate indicators.

[33] For the snow routine (SCF and DDF) and runoff gen-
eration (FC and B) parameters, the correlation coefficients
with climate indicators are higher than those with the static
catchment attributes such as RND and catchment area. This
suggests that the variability in snow and runoff generation
processes at the scale of Austria is more strongly controlled
by climatic variability than by the differences in static catch-
ment attributes. This is in line with the analyses of event run-

off coefficients in Austria by Merz and Blöschl [2009a].
They concluded that event runoff coefficients were most
strongly correlated to indicators representing climate, such
as mean annual precipitation, through controlling the sea-
sonal soil moisture variability. Land use, soil types, and
geology did not seem to exert a major control on the runoff
coefficients with the data they had available and at the re-
gional scale of the analysis. Clearly, if more detailed soils
and geology data were available for smaller catchment
scales, one would expect very strong controls.

[34] For the four parameters (K0, K1, K2, and CP) of the
routing component, the correlation coefficients to climate
indicators are always small and on the same order or slightly
lower than those of the static catchment attributes (Figure 10).
This is consistent with the results of Merz and Blöschl [2004],
who found the highest correlations of K0, K1, K2, and CP with
the mean slope, the river network density, the percentage of
tertiary and quaternary geological units, and catchment area,
respectively. For a similar model type and 11 catchments in
Sweden, Seibert [1999] found the best correlation of the flow
routing parameters with catchment area, lake percentage, and
forest percentage. Interestingly, in Figure 10 there is a consist-
ent correlation between the percolation rate CP and percent
forest cover, which would be expected because of more per-
meable soils in the forest than for other land uses.

4.3. Implications for Climate Impact Analysis

[35] The previous analyses have shown that some of the
calibrated parameters consistently vary with time and can
be related to climate fluctuations. Given these parameter
changes, an obvious question now is whether they matter
for hydrologic prediction. The effects of the parameter
changes on three flow indicators are analyzed here: the Q95

low-flow quantile (the discharge exceeded 95% of the
time), the Q50 median flow, and the Q5 high-flow quantile
that is exceeded 5% of the time. Q95 is widely used in
Europe and is relevant for numerous problems in water
resources management [e.g., Smakhtin, 2001; Laaha and
Blöschl, 2007]. The median is a measure of the water bal-
ance. Q5 was used instead of peak discharges as it can be
more robustly estimated from the 5 year periods used here.

[36] The error of runoff predictions consists of two parts.
The first stems from the imperfect fit of the model to the
runoff data during the calibration period and is mainly
related to data and model structure errors [Di Baldassarre
and Montanari, 2009]. The second arises when moving
from the calibration to the verification (or any other) period
and is mainly related to less than optimum parameters. Ver-
ification performance therefore tends to be lower than the
calibration performance [see, e.g., Merz et al. 2009].
Assuming that the model parameters remain constant with
time is expected to increase the second part of the error if
nonstationarities are present. Both errors are shown in
Figure 11. The dotted black lines in Figure 11 show the av-
erage of the errors �Qi;i in the calibration period (i.e., the
first part of the error due to an imperfect calibration) :

�Qi;i ¼
Qsim;i;i � Qobs;i

Qobs;i
; ð6Þ

where Qsim;i;i is the simulated flow characteristic in period i
using the parameters calibrated for the same period, and
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Qobs;i is the observed flow characteristic in period i. For
example, the last segment of the dotted black line in Figure
11 (top right) shows 0.08, which is the relative difference
of the simulated and observed Q5 for the period 2001 –
2006 using the parameters calibrated for 2001 –2006. The
thick solid black lines in Figure 11 show the average of the
errors �Qi;j in verification period i (i.e., both parts) :

�Qi; j ¼
Qsim;i; j � Qobs; i

Qobs; i
;

where Qsim;i;j is the simulated flow characteristic in period
i using the parameters calibrated for a different period j.
The horizontal axes of the panels relate to the periods i,
while the different rows relate to different periods j. For
example, the last segment of the thick solid black line in
Figure 11 (top right) shows 0.30, which is the relative dif-
ference of the simulated and observed Q5 for the period
2001–2006 using the parameters calibrated for 1976–1981.
The spatial averages of the wetter and drier catchments are
shown as solid and dashed grey lines, respectively, as in
Figure 2.

[37] Figure 11 indicates that there are significant errors in
the simulated flow quantiles if one assumes that the model
parameters are time stable. When using the parameters cali-
brated to the period 1976–1981 for predicting the flows in
2001–2006, the Q95 low flows are overestimated by about
12%, Q50 is overestimated by about 15%, and the Q5 high
flows are overestimated by about 35% (Figure 11, top, thick
solid black lines). The parameters from the period 1976–
1981 represent colder periods with less evapotranspiration

and relatively higher runoff generation rates (lower B val-
ues; see Figure 4) and smaller soil moisture storages (lower
FC values; see Figure 4). The model hence produces too
much runoff when applying the parameters to the drier pe-
riod 2001–2006. Similarly, using parameters calibrated to
recent periods for simulating flow in the earlier periods tends
to underestimate the flow characteristics (Figure 11, bottom).
As expected, the differences between simulated and observed
flows increase with increasing time lag between the period
used to calibrate the parameters and the period for which
flows are simulated.

[38] Interestingly, the differences between simulated and
observed flows tend to be smaller for the Q95 low flows and
the Q50 median flows than for the Q5 high flows. High-flow
situations may differ substantially between the different
calibration periods. Apparently, the model only represents
high flows well if it is calibrated to a period in which simi-
lar high-flow conditions were observed, thus reducing the
model performance as one moves away from the calibra-
tion period. Mean flows and low flows are more stable in
time, so mean and low-flow conditions of one period may
be more representative of other periods [Laaha and Blöschl,
2005]. Low flows in the Austrian lowlands are caused by
long periods of no or little rainfall in summer, while low
flows in the Alps are caused by snow and freezing proc-
esses in winter. These processes are associated with longer
time scales than flood processes, and aquifer storage addi-
tionally increases time scales [Skøien et al., 2003]. This
explains the lower time dependence. Also, errors in the
input rainfall data will be less important in periods of no or
little rainfall.

Figure 11. Relative validation errors of observed and simulated low (Q95), median (Q50), and high
(Q5) flow quantiles for different 5 year periods, averaged over the 273 Austrian catchments (thick black
lines) when time stability of the parameters is assumed. The spatial averages of the wetter and drier
catchments are shown as solid and dashed grey lines, respectively. The dotted line shows the relative
error using the calibration parameter set from the period on the horizontal axis.
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[39] To analyze the predictive errors due to the time lag
between the calibration and prediction periods in more
detail, the cumulative distribution function (CDF) of the
absolute differences between simulated and observed flows
have been plotted in Figure 12. The absolute errors of the
Q50 median flows for time lags of 0, 5, 15, and 25 years are
at least 1%, 5%, 9%, and 16%, respectively, for half the
catchments (CDF ¼ 0.5). The errors of low and high flows
are larger as it is more difficult to represent the extremes
well. As expected, the absolute errors are smallest for a
time lag of zero, as this reflects the calibration case where
the model performance is better than in the validation case.
For all three flow indices, Q95, Q50, and Q5, the errors
increase with increasing time lag. This means that the lon-
ger one extrapolates to the future (or the past), the more the
model errors will increase. Only for the Q5 high flows are
the errors of 20 and 25 years similar. In the case of the low
and high flows, the contribution of the calibration error
(6% and 9%, respectively) to the total error is much larger

than in the case of the median flows (1%) (CDF ¼ 0.5).
This is partly related to the choice of the objective function
that gives more weight to median flow than the high flows
and partly to the time scales. However, in all instances the
error due to the time trends is very important. The differences
in the large errors are even larger, i.e., if one examines the
errors exceeded in one quarter of the catchments (CDF ¼
0.75), as indicated in Table 2.

5. Conclusions and Implications
[40] The main findings of this paper are as follows. The

parameters of the snow and soil moisture accounting
schemes of the model (the snow correction factor, the
degree-day factor, the maximum soil moisture storage, and
the nonlinearity parameter of runoff generation) show clear
time trends if calibrated to different periods. The trends are
similar for different subregions of the study area, which
suggests they are real rather than calibration artifacts. The
temporal changes in the calibrated parameters can be
related to climate indicators such as the air temperature and
potential evapotranspiration. The mean annual air tempera-
tures in the catchments have increased, on average, by
almost 2�C between 1976 and 2006, resulting in higher
evapotranspiration and drier catchment conditions in the
more recent years, which explains much of the time trends
of the parameters. In most instances, the temporal correla-
tions between the model parameters and the climate indica-
tors for each catchment are consistent with spatial
correlations between the model parameters and the climate
indicators for each time period, lending additional credence
to the results. Also, the relationships can be interpreted on
hydrological grounds and are consistent with independent
data on snow depths and runoff coefficients. The parame-
ters related to the routing scheme show less clear time
trends, and the correlations to the climate indices are
weaker. To examine the effect of assuming that the model
parameters do not change with time, simulations were

Figure 12. Cumulative distribution of the absolute validation errors of simulated low (Q95), median
(Q50), and high flows (Q5) for different 5 year periods, when time stability of the parameters is assumed.
Curve parameter is the time lag between the calibration and the verification periods. A time lag of 0 cor-
responds to the calibration errors.

Table 2. Absolute Values of the Relative Validation Errors (%)
of Simulated Low (Q95), Median (Q50), and High Flows (Q5) for
Different 5 Year Periods, When Time Stability of the Parameters
Is Assumeda

T (years)

CDF ¼ 0.50 CDF ¼ 0.75

Q95 Q50 Q5 Q95 Q50 Q5

0 6 1 9 10 2 18
5 9 5 13 15 9 24

10 10 7 15 16 12 28
15 10 9 20 18 16 35
20 11 12 27 19 19 44
25 14 16 25 25 24 47

aT is the time lag between the calibration and the verification periods.
A time lag of 0 corresponds to the calibration errors. Numbers given are
the errors exceeded by half of the 273 catchments (CDF ¼ 0.50) and a
quarter of the catchments (CDF ¼ 0.75). CDF, Cumulative distribution
function.
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performed using parameters calibrated from periods that
are different from the simulation periods. The simulation
errors clearly increase with the time lag between the cali-
bration period and the simulation period. They are largest
for high-flow simulations followed by low flows and me-
dian flows.

[41] These results have important implications for hydro-
logic prediction in general and climate impact analyses in
particular. The perhaps most obvious implication is that
care needs to be taken when using calibrated parameters
for predictions of the future. The predictive errors can be
very large, and a large portion of the errors may be due to a
transient climate. Using calibrated parameters for predic-
tions of a transient future will increase model uncertainty
beyond the uncertainties usually dealt with in simulation
studies. These uncertainties relate to climate impact studies
as discussed by Blöschl and Montanari [2010] but, in fact,
any hydrological predictions will be affected by parameter
errors due to a transient climate to a larger or lesser degree.
Assume we were in the year 1981 and climate models pre-
dicted a 100 mm increase in annual precipitation and an
almost 2�C increase in air temperature. Most hydrological
models would probably predict an increase in runoff, simi-
lar to the model used here. We now know that such predic-
tions were wrong, as the average observed runoff has not
increased and the increase in precipitation has been offset
by increases in actual evapotranspiration. The model esti-
mates, obviously, depend on how evapotranspiration is
exactly parameterized, but the model used here is a very
common one in hydrology. Also, the model used here does
predict increased evapotranspiration rates related to the
increases in air temperature, but they are much smaller than
what can be inferred from the runoff data. Runoff simula-
tions may therefore be much less reliable than what is usu-
ally thought in impact studies [Blöschl and Montanari,
2010]. This applies even more so to low flows and floods.

[42] There are a number of potential options for dealing
with this nonstationarity issue and to reduce the errors
below those shown in Table 2. The first is to explicitly
account for nonstationary model parameters. This paper
shows strong evidence of correlations with climate varia-
bles, so one could exploit these correlations to predict the
parameters to be used in the catchment model as part of
impact studies. This option is not an elegant one as the
usual philosophy of dynamic models is to use time-depend-
ent boundary conditions (such as rainfall) and non-time-de-
pendent model parameters to make the model directly
applicable to predictions using future (or different) bound-
ary conditions. Also, this may be complicated by complex
correlations among the parameters and with various catch-
ment characteristics [Andréassian et al., 2003; Wagener,
2007]. An alternative would be to change the model struc-
ture. What is needed are models that if used in an analysis
similar to the one in this paper, will give calibration param-
eters that are time stable. When using the parameters cali-
brated for the late 1970s to simulate runoff at the beginning
of the twentieth century, runoff is overestimated (Figure
11). The main reason for this is that evapotranspiration at
the beginning of the twentieth century was larger than in
the late 1970s and only part of the difference can be
explained by the evapotranspiration component of the
model. Apparently, the vegetation transpired more

efficiently than would be expected from air temperature
alone. This is likely related to a longer growing season.
The model structure used here, however, assumes that
the processes determining the length of the growing season
are outside the model domain and therefore external to the
model. This assumption ignores any feedbacks between
the hydrological cycle and the processes determining the
length of the growing season. Incorporating them into the
model may help reduce the biases. However, it would not
be expected that all the errors shown in Figure 12 can be
avoided as they consist of both biases and random error.

[43] Some people may argue that relying less on calibra-
tion would help improve the model predictions. It is true
that if one avoids calibration, one also avoids the issues dis-
cussed here, but then one does not take advantage of the
bias reduction calibration can provide. The errors may per-
haps not change with time and may be large all the time.
This is reminiscent of the prediction in ungauged basins
(PUB) problem where the issue is to predict runoff for
catchments where no runoff data are available for calibra-
tion [Sivapalan, 2003]. In fact, this is very similar to the
problem discussed here (see, e.g., the discussion of model
testing by Kleme�s [1986]), with the difference that PUB
relates to extrapolation in space while here one is interested
in the extrapolation in time. It is suggested that the term
‘‘prediction in ungauged climates’’ would be fitting for the
transient prediction problem discussed in this paper.

[44] In the literature related to the PUB problem [e.g.,
Sivapalan, 2003, 2009], there has been an ongoing discus-
sion of what the prospects of models that do not need cali-
bration are, but as stated, in typical hydrological studies,
calibration will help reduce bias [Blöschl, 2005; Montanari
and Toth, 2007]. It will be interesting to develop models
that are more robust to extrapolation in time than the cur-
rent generation of conceptual models and still have compa-
rable model biases. Whether these models will be more
complex than the current generation of conceptual models
remains to be seen. It seems clear, however, that a new gen-
eration of models will profit from identifying and testing
them to hydrological data that go beyond runoff. It will
likely be necessary to use soil moisture and snow data
[Blöschl and Kirnbauer, 1992; Parajka et al., 2006, 2007a]
and other hydrological response data [Fenicia et al., 2007,
2008; Winsemius et al., 2009] to identify model structures
that are able to reliably represent hydrological processes in
a changing world.
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