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Abstract. This study compares ERS scatterometer top soil
moisture observations with simulations of a dual layer con-
ceptual hydrologic model. The comparison is performed for
148 Austrian catchments in the period 1991–2000. On aver-
age, about 5 to 7 scatterometer images per month with a mean
spatial coverage of about 37% are available. The results in-
dicate that the agreement between the two top soil moisture
estimates changes with the season and the weight given to
the scatterometer in hydrologic model calibration. The hy-
drologic model generally simulates larger top soil moisture
values than are observed by the scatterometer. The differ-
ences tend to be smaller for lower altitudes and the winter
season. The average correlation between the two estimates is
more than 0.5 in the period from July to October, and about
0.2 in the winter months, depending on the period and cal-
ibration setting. Using both ERS scatterometer based soil
moisture and runoff for model calibration provides more ro-
bust model parameters than using either of these two sources
of information.

1 Introduction

Continuous progress in the remote sensing technology and
advances in the retrieval and mapping concepts go in line
with the efforts of testing their accuracy and applicability in
different fields and disciplines. The recent advances in global
soil moisture retrieval have received much attention in the
hydrologic science, as the volume of water stored in the soils
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plays a critical role for many scientific and operational tasks.
The knowledge of the actual soil moisture state is crucial in-
formation which helps hydrologists to predict the response
of catchments to different precipitation forcing and indicates
the vulnerability of regions to drought. Global coverage is
appealing, however, due to its indirect way of retrieval and a
coarse spatial resolution, the validation and comparison with
other soil moisture estimates over different scales and regions
is needed.

In the past, a few studies compared the global soil mois-
ture estimates with field measurements. Soil moisture in-situ
observations are fairly accurate but they are point measure-
ments. It is in fact a challenging task to compare scatterom-
eter soil moisture data, which represents large-scale variabil-
ity, with field measurements since the scatterometer data is
more sensitive to the atmospheric-forcing related component
of soil moisture than the small-scale land surface related vari-
ability. Wagner et al. (1999) validated ERS scatterometer
(SCAT) data with gravimetric soil moisture measurements
in the 0–20 cm and 0–100 cm layers over 211 field sites in
Ukraine in the period 1992–1996 and found mean correla-
tions from 0.35 to 0.53 and from 0.33 to 0.49 in the 0–20 cm
and 0-100 cm soil layers, respectively. In a more extensive
comparison, Ceballos et al. (2005) validated scatterometer
observations with field measurements from the REMEDHUS
soil moisture station network (20 stations) in the central part
of the Duero Basin located in West Spain. In this area they
found mean square error between the scatterometer data and
the average soil moisture in the 0–100 cm profile of 2.2 vol %
and the coefficient of determination of 0.75. Several similar
experiments have shown beneficial information of SCAT soil
moisture data in hydrological (Dirmeyer et al., 2004; Sci-
pal et al., 2005; Parajka et al., 2005; Pellarin et al., 2006),
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climate (Fontaine et al., 2006), meteorological (Zhao et al.,
2006), and agro-meteorological (De Wit et al., 2007) studies.

One option for comparison and combination of satellite
soil moisture estimates is their assimilation into hydrologic
models. The rationale of combining hydrological models and
satellite data is that even though both sources have clear lim-
itations, are not defined in exactly the same way, and are as-
sociated with significant uncertainty it is their combination
that should help reduce the uncertainty of the integrated es-
timates. The error structures of the two sources are likely
different, so one would expect a combination of them to be
less biased and exhibit less random error than any of them
individually. The hypothesis of different error structures is
plausible because of a number of reasons. Most importantly,
the estimates come from completely different instruments,
ground based instruments and spaceborne sensors, so one
would also expect their errors to be different. Also, the mod-
els that estimate soil moisture in these two sources have dif-
ferent structures and they are calibrated in different ways.

Soil moisture assimilation has attracted a lot of attention in
hydrology in the last decade (e.g., Hoeben and Troch, 2000;
Houser et al., 2000; Walker et al., 2001; Francois et al., 2003;
Parada and Liang, 2004 and 2008; Reichle and Koster, 2005;
Crow et al. 2005). These studies have mostly focused on
the assimilation of surface soil moisture data into land sur-
face models. Some of these studies have been performed
in a real time mode and have hence used a scheme for up-
dating the state variables of the model. Houser et al. (2000)
and Walker et al. (2001) assessed the relative merits of updat-
ing schemes including direct insertion, statistical corrections,
Newtonian nudging, optimal interpolation, Kalman filtering
and ensemble Kalman filtering. Pauwels et al. (2002) assim-
ilated scatterometer soil moisture into a lumped hydrologic
model and investigated the potential of improving runoff pre-
dictions. Another important application is the simulation
mode where the soil moisture data are used in the calibration
of hydrologic models together with other data sources. Such
an application is presented, e.g., in Parajka et al. (2006), who
compared root zone soil moisture estimates from the scat-
terometer data and a conceptual semi-distributed hydrologic
model in Austria and examined the value of the scatterometer
for improving hydrological simulations in both gauged and
ungauged catchments. Their results showed that assimila-
tion of the scatterometer data into the hydrologic model dur-
ing the model calibration improved the agreement between
the two soil moisture estimates without any significant de-
crease in runoff model efficiency. For the case of ungauged
catchments, the scatterometer assimilation did not improve
the runoff model simulations, but provided more consistent
patterns of soil moisture estimates.

The main objective of this study is to compare the ERS
scatterometer estimates with top soil moisture simulations of
a dual-layer conceptual hydrologic model. The research fo-
cuses on the evaluation of the agreement between the simu-
lated and observed top soil moisture in different seasons and

elevation zones and on the assessment of the added value of
scatterometer estimates in the multiple objective calibration
of the hydrologic model for 148 catchments.

The paper goes beyond the existing studies in a number
of ways. First, the most recent version of the scatterom-
eter Global Soil Moisture product is used. The finer spa-
tial resolution of the product shows the spatial variability of
scatterometer top soil moisture in more detail. Second, the
dual layer hydrologic model simulates directly the top soil
moisture, while Parajka et al. (2006) compared root zone
soil moisture. Third, the comparison of the soil moisture
estimates is performed for different seasons and elevation
zones, which allows to make inferences about the value of
scatterometer data for hydrologic modeling.

The paper is organized as follows. The data section in-
cludes the description of the scatterometer, hydrologic and
climatic datasets. The scatterometer subsection describes
the retrieval algorithm and evaluates the spatial and tempo-
ral availability of the scatterometer observations over Aus-
tria. The method section presents the hydrologic model and
its calibration and describes the criterions used for the com-
parison of the scatterometer and hydrologic model top soil
moisture estimates. The results section examines the value
of the scatterometer estimates in the hydrologic model cali-
bration and compares the spatial and seasonal agreement be-
tween observed and simulated top soil moisture. Finally, the
discussion and conclusion sections discuss the potential of
the scatterometer observations in hydrological modeling and
present some concluding remarks.

2 Data

The dataset used in this study includes a scatterometer top
soil moisture estimates, climatic data used for driving a hy-
drologic model and runoff observations used for hydrologic
model calibration and verification. The study region is Aus-
tria and the data are from the period 1991–2000.

2.1 Scatterometer observations

The scatterometer soil moisture dataset used in this study is
the outcome of the latest reversion of the TU Wien soil mois-
ture retrieval algorithm, WARP5 (Water Retrieval Package),
which has been developed at the Institute of Photogramme-
try and Remote Sensing at the Vienna University of Tech-
nology (TU Wien). In the TU Wien algorithm, which is
basically a change detection method presented initially by
Wagner et al. (1999), the long-term measurements of the
scatterometer on board European Remote Sensing satellites
(ERS-1 and ERS-2) are used to extract surface soil moisture
dynamics. The new algorithm has been implemented in a
discrete global grid with 12.5 km grid spacing and includes
new features such as azimuthal anisotropy correction of the
backscatter signal (Bartalis et al., 2006) and a soil moisture
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Table 1. Availability, mean spatial coverage and mean top soil moisture estimated from the scatterometer (ERS) images over Austria using
different masking criteria. Masking criterion defines the cases when are the scatterometer pixel values taken into mean values estimation.
The first and second values represent the mean top soil moisture (vol.%) and mean spatial coverage (%) over Austria, respectively. Period
1991–2000.

Month Availability
[days]

Unmasked Air temperature
>0◦C

Air temperature
>5◦C

Snow depth
<0.1 cm

Snow depth
<2 cm

January 81 42/42 58/14 67/2 49/10 48/10
February 77 43/34 48/20 53/6 51/10 51/9
March 82 48/41 52/29 56/13 52/15 52/14
April 48 35/29 35/26 36/20 36/20 37/19
May 75 41/38 42/38 42/35 42/35 42/35
June 61 52/41 52/41 53/40 52/41 52/41
July 57 58/35 58/35 59/34 58/35 58/35
August 59 53/33 53/33 53/33 53/33 53/33
September 71 52/36 52/35 53/34 52/36 52/35
October 86 46/37 47/35 49/29 47/34 47/34
November 83 54/37 61/29 64/13 61/23 60/23
December 106 46/37 62/15 82/2 59/11 57/11

noise model (Naeimi et al., 2008a). Furthermore, the new al-
gorithm utilizes the continuation of the soil moisture data re-
trieval from the Advanced Scatterometer (ASCAT), succes-
sor of the SCAT, on board the Meteorological Operational
(METOP) satellite series, which will be operated until at
least 2020. The new dataset has been made available on
http://www.ipf.tuwien.ac.at/radar/.

Scatterometers onboard ERS satellites are active mi-
crowave instruments operating in C-band (5.6 GHz) at VV
polarization providing day and night time backscatter mea-
surements unaffected by cloud cover. The three SCAT an-
tennae illuminate radar beams looking at three different az-
imuthal angles 45◦, 90◦, and 135◦ with respect to the satel-
lite’s track and different incidence angles ranging from 18◦ to
59◦. Three concurrent backscatter measurements, so-called
“triplets”, are acquired at different viewing angles relating to
50 km cells that are oversampled to a 25 km orbit grid.

Low frequency microwaves (1–10 GHz) are highly sensi-
tive to the water content in the soil surface layer, although
the surface roughness and vegetation also play an important
role in backscattering from the surface. In the TU Wien al-
gorithm, the multi-looking direction ability of scatterome-
ter is used to describe the incidence angle behaviour of the
backscatter signal as a seasonal function. The estimated
incidence-angle dependency function is used for normaliza-
tion of the backscatter signal to a unique reference incidence
angle chosen as 40◦ and also to eliminate vegetation contri-
bution in. Eventually the normalized backscatter is scaled be-
tween the lowest and highest values ever measured within the
long-term observations representing the driest and wettest
conditions. In this way, corresponds to the relative soil mois-
ture values at the topmost 2 cm of the soil and range between
0% and 100%.

 

 

 

 

 

Figure 1. Topography of Austria and location of grid centers of scatterometer top soil 

moisture estimates. 
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Fig. 1. Topography of Austria and location of grid centers of scat-
terometer top soil moisture estimates.

The location of the grid centers of the scatterometer data
over Austria are presented in Fig. 1. In total, timeseries of
top soil moisture are available at 621 grid cells. A typical
example for 20 May 1996 is presented in Fig. 2 indicating
that, often, top soil moisture is not available for the entire
region. The ERS satellites carry an Instrument which com-
bines the functions of a Synthetic Aperture Radar (SAR) and
a Scatterometer, which are not operated simultaneously. The
reduced temporal sampling is caused mainly by preferential
switching to the SAR mode in this region. The mean spa-
tial coverage ranges between 29.1% in April and 42.1% in
January (Table 1). The mean top soil moisture estimated
as the average of available scatterometer images varies from
35% in April to 58% in July and the availability in varies
from 48 images in April to 106 images in December. How-
ever, the images in the winter months are often affected by
snow and frozen ground, which affects the mapping accuracy
of the retrieval algorithm. The estimation of soil moisture
over snow covered or frozen ground is not possible, and thus
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Figure 2. Example of a scatterometer top soil moisture image, May, 20, 1996. 
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Fig. 2. Example of a scatterometer top soil moisture image, 20 May
1996. 

 

 

 

 

Figure 3. Frequency of top soil moisture retrieval within the period 1.1.1991-31.12.2000. 
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Fig. 3. Frequency of top soil moisture retrieval within the period 1
January 1991–31 December 2000.

these regions need to be masked. Table 1 shows the effects
of different masking criteria on the change of the mean spa-
tial coverage and the seasonal mean of top soil moisture im-
ages over Austria. The interpolated air temperature and snow
depth maps (see the data section) were applied for detecting
and masking scatterometer pixels which may be affected by
snow or frozen ground. It is clear that the availability of scat-
terometer data decreases in winter. In January e.g., the mean
spatial coverage drops from 42% (unmasked data) to 10% if
snow depth data are used for masking and to 14% and 2.2%
if the air temperature data are applied. The comparison of the
change in top soil moisture mean over Austria indicates that
the occurrence of snow over retrieved pixels decreases the
top soil moisture. In January e.g., the mean top soil moisture
increases from 42 vol.% for unmasked data to 58 vol.% for
the positive air temperature data (Table 1).

The spatial variability in the frequency of top soil moisture
retrieval in the period 1991–2000 is presented in Fig. 3. The
spatial patterns indicate that in the eastern and central part of
Austria, top soil moisture information is available on about
10–15% of the days, while in the Tirolian Alps, it is available
on less than 5% of the days of the period 1991–2000.

2.2 Climatic and hydrologic data

The soil moisture was analyzed in 148 gauged catchments.
These catchments are in different physiographic and climatic

zones and range in size from 25 km2 to 9770 km2 with a me-
dian of 369 km2. Daily runoff observations were available
to calibrate and verify a hydrologic model. In preliminary
analyses (e.g. Merz and Blöschl, 2004), the quality of the
runoff data was checked and catchments that are subject to
significant anthropogenic influences and/or where the water
balance could not be closed were excluded from the data set.
The inputs to the hydrologic modelling were prepared from
daily measurements of precipitation at 1091 stations and air
temperature at 240 climatic stations. For the identification
of snow covered areas, the daily snow depth measurements
observed at precipitation stations were applied. The precipi-
tation and air temperature station data were spatially interpo-
lated to regular 1×1 km grid covering the entire Austria. Ex-
ternal drift kriging was applied for the interpolation of pre-
cipitation and snow depth, and the least-squares trend pre-
diction method was used for air temperatures interpolation
(Pebesma, 2001). Potential evapotranspiration was subse-
quently estimated from air temperature grid maps and digi-
tal elevation model using a modified Blaney-Criddle method
(Parajka et al., 2003; Ḿesźarǒs and Mikĺanek, 2006). Next,
time-series of input variables were extracted for different ele-
vation zones in each selected catchment. For their determina-
tion ranges of 200 m were applied in each catchment, starting
consistently from zero elevation (0 m a.s.l.). This enabled us
to run independent simulations of water balance components
(including soil moisture) in different elevation zones.

3 Method

3.1 Hydrologic model

Soil moisture state was simulated by a conceptual semi-
distributed hydrologic model that follows the structure of
the HBV model. The model runs on a daily time step and
consists of snow, soil moisture and flow routing routines.
The soil moisture routine represents runoff generation and
changes in the soil moisture state of the catchment. In con-
trast to a lumped representation of soil storage in the conven-
tional HBV scheme, the model applied in this study uses a
parsimonious dual layer soil representation developed at the
TU Vienna (Komma et al., in preparation). The soil storage
is represented by a thin skin soil layer at the surface sitting
on the top of the main soil reservoir (Fig. 4). The skin soil
layer represents a reservoir which is filled by rain and snow
melt. If the capacity of the skin soil reservoirLskin is reached,
the excess waterdQskin is divided into two components. The
fraction dQ becomes runoff. The fractiondSs increases the
main soil moistureSs . The soil moisture of the skin soil
reservoir is reduced by a fraction of the actual evaporation
AETskin = (1 − ϕ) × AET , whereAET is the actual evapo-
ration and the parameterφ subdividesAET into evaporation
from the mainAETmain and the skin soil layerAETskin. The
skin soil reservoir and the main soil reservoir are connected

Hydrol. Earth Syst. Sci., 13, 259–271, 2009 www.hydrol-earth-syst-sci.net/13/259/2009/



J. Parajka et al.: Scatterometer soil moisture vs. conceptual dual layer model 263 

 

 

 

 

Figure 4. General schematic of the Dual Layer soil moisture accounting scheme introduced in 

the HBV model concept. 
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Fig. 4. General schematic of the Dual Layer soil moisture account-
ing scheme introduced in the HBV model concept.

by a bidirectional moisture fluxQm which is assumed to be
a linear function of the vertical soil moisture gradient1m:

Qm = 1m × αm, (1)

whereαm is a transfer parameter. If the skin soil moisture is
greater than the soil moisture of the main layer, percolation
from the skin to the main soil layer occurs (Qm>0). If the
skin soil moisture is less than soil moisture of the main layer,
capillary raise from the main to the skin soil layer occurs
(Qm <0). The vertical soil moisture gradient is defined as
the difference between the relative soil moisture in the skin
soil reservoir and that in the main soil reservoir, i.e.:

1m =
Sskin

Lskin
−

Ss

Ls

, (2)

whereSskin stands for the skin soil moisture,Lskin defines
the capacity of the skin soil reservoir, andSs andLs are the
moisture state and the capacity of the main soil reservoir.

The dual layer soil moisture accounting scheme uses three
parameters. These are the capacity of the skin soil reservoir
Lskin, the transfer parameterαm and theAETsubdivision pa-
rameterφ.

A detailed information about the remaining part of the hy-
drological model is given in appendix of Parajka et al. (2007).
The hydrologic model with the dual layer extension has
18 parameters. In this study four parameters were fixed
(TR=2◦C, TS=−2◦C, CR=26.5 day2.m−1, BMAX =10 days;
for details see Parajka et al. 2007) and 14 parameters (Ta-
ble 2) were estimated by automatic model calibration.

3.2 Model efficiency to observed runoff and top soil mois-
ture

Calibration and validation of the hydrologic model is based
on a number of efficiency measures and error measures that

Table 2. Hydrologic model parameters and lower (pl) and upper
(pu) bounds used in model calibration. A more detailed descrip-
tion of the model parameters and the model structure is given in the
appendix of Parajka et al. (2007).

Model parameterj Model component pl pu

SCF[−] Snow 0.9 1.5
DDF [mm/◦C day] Snow 0.0 5.0
TM [◦C] Snow −2.0 3.0
Lskin [mm] Top soil 1.0 10.0
αm [mm/day] Top soil 5.0 15.0
φ [−] Top soil 0.8 0.95
LP/FC [−] Main soil 0.0 1.0
FC [mm] Main soil 0.0 600
β [−] Main soil 0.0 20
K0 [days] Runoff 1.0 2.0
K1 [days] Runoff 2.0 30
K2 [days] Runoff 30 250
CP [mm/day] Runoff 0.0 8.0
LSUZ [mm] Runoff 1.0 100

represent the match (or mismatch) of the simulation and the
observed data. For runoff, the Nash-Sutcliffe Model effi-
ciency (ME) has been used in two variants,ME andM

log
E ,

that emphasize high and low flows, respectively:

ME = 1 −

n∑
i=1

(
Qobs,i − Qsim,i

)2

n∑
i=1

(
Qobs,i − Qobs

)2
(3)

and

M
log
E = 1 −

n∑
i=1

(
log(Qobs,i) − log(Qsim,i)

)2

n∑
i=1

(
log(Qobs,i) − log(Qobs)

)2
(4)

whereQsim,i is the simulated runoff on dayi, Qobs,i is the
observed runoff,Qobs is the average of the observed runoff
over the calibration (or verification) period ofn days.

The agreement between observed (scatterometer) and sim-
ulated (hydrologic model) top soil moisture has been de-
scribed by the correlation coefficientr and the mean differ-
ence measureSB . In order to reduce the effects of snow cover
on the accuracy of scatterometer soil moisture, these agree-
ment measures were calculated only for days without snow
cover. The correlation coefficient is estimated according fol-
lowing relation:

r =

m∑
j=1

(
Sobs,j − S̄obs

)
×

(
Ssim,j − S̄sim

)
√

m∑
j=1

(
Sobs,j − S̄obs

)2
×

m∑
j=1

(
Ssim,j − S̄sim

)2
(5)
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whereSsim,j is the top soil moisture simulated by the hy-
drologic model on dayj , Sobs,j is the scatterometer top soil
moisture on day ,j and S̄obs and S̄sim are the averages of
the observed and simulated top soil moisture over the period
of scatterometer observations without snow ofm days. The
scatterometerSobs,j and simulated top soil moistureSsim,j

are defined in relative units [%], whereSsim,j is defined as
the skin soil moisture to capacity of skin reservoir ratio:

Ssim,j =
Sskin

Lskin

and they represent the averages over particular elevation zone
of a catchment. The zonal scatterometer estimates are aver-
aged from 12.5 km grids (the grid resolution is presented in
Fig. 1), the simulation by the hydrologic model are indepen-
dently performed for each elevation zone.

The SB measure represents the difference between the
scatterometerSobs and hydrologic modelSsim top soil mois-
ture and is defined as:

SB =

m∑
j=1

(
Ssim,j − Sobs,j

)
m

(6)

i.e., for a positiveSB value the hydrologic model overesti-
mates the scatterometer data.

3.3 Hydrologic model calibration

Simulation of soil moisture by the hydrologic model requires
the estimation of model parameters. In this regional study we
applied an automatic calibration approach, which is based
on the SCE-UA global optimization algorithm (Duan et al.,
1992). The calibration is based on minimizing a compound
objective functionZM :

ZM = (1 − wr) × ZS + wr × ZQ (7)

whereZQ andZS relate to the observed runoff and the top
soil moisture data andwr weights these two different objec-
tives. Equation(7) was applied to test three different cali-
bration variants. In a first variant, termed runoff only cali-
bration, we emulate the usual model calibration and estimate
the parameters of the hydrologic model by minimising the
differences between observed and simulated runoff alone. In
this case, the weightwr is set to unity (wr=1.0, Eq. 7) and
the runoff objective function is defined as:

ZQ = wQ ×

(
1 − ME) + (1 − wQ) × (1 − M

log
E

)
(8)

where the weightwQ is set to 0.5. The idea of Eq. (8) is to

combine two agreement measuresME andM
log
E , that equally

emphasize high and low flows.
In a second variant, termed soil moisture only calibration,

we emulate the case, where only observed scatterometer data
are used for constraining the hydrologic model parameters.

 

 

 

 

 

Figure 5. Sensitivity of the runoff model efficiency ME (solid lines) and top soil moisture 

correlation r (dashed lines) to the weight wr (Eq. 7). Median over 148 catchments. 
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Fig. 5. Sensitivity of the runoff model efficiencyME (solid lines)
and top soil moisture correlationr (dashed lines) to the weightwr

(Eq. 7). Median over 148 catchments.

In this situation, the weightwr (Eq. 7) is set to zero (wr=0.0,
Eq. 7) and the soil moisture objective function is defined as:

ZS=1 − r (9)

where r is the correlation coefficient (Eq. 5) between ob-
served and simulated top soil moisture. The correlation was
estimated using the top soil moisture observations and the
corresponding simulations in different elevation zones of a
particular catchment.

In a third variant, termed multiple-objective calibration,
we use both runoff and scatterometer top soil moisture data
to calibrate the model by minimizing the compound objective
functionZM (Eq. 7). In this study the weightwr is chosen
on the basis of sensitivity analyses (see Results section). The
sensitivity analyses investigate the change of runoff and top
soil moisture model efficiencies with respect to the selection
of the weightwr .

4 Results

The variation of runoff and top soil moisture model efficien-
cies with respect to change of the weightwr is presented
in Fig. 5. Figure 5 shows the median of runoff and top
soil moisture efficiencies estimated over 148 catchments in
two calibration and verification periods. Such an evalua-
tion follows the split-sample test of Klemeš (1986), where
two five-year periods are used in turn for calibration and
validation. The left panel shows the model performance in
the calibration period 1991–1995 and the verification period
1996–2000; the right panel shows the model performance
in the calibration period 1996–2000 and the verification pe-
riod 1991–1995. The sensitivity analysis indicates that the
runoff model efficiency (ME , solid lines) changes only lit-
tle for wr between 0.3 and 1.0. Only aswr decreases below
0.10, ME begins to drop as very little importance is given
to the runoff data in the calibration. The patterns of top
soil moisture correlation (r, dashed lines) show a slow de-
crease forwr between 0.0 and 0.80. When the weightwr

exceeds 0.85,r begins to drop as very little importance is
given to the scatterometer data in the calibration. There is
a quite large range ofwr (between 0.3 and 0.8) where both
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Table 3. Runoff model efficiencyME (Eq. 3) evaluated for three calibration variants: (1) runoff only calibration (wr=1.0), (2) soil moisture
only calibration (wr=0.0) and (3) multiple objective calibration (wr=0.65). The first and second values represent the median and percentile
difference (p75%−p25%) over 148 catchments, respectively.

Calibration variant Calibration 1991–1995 Verification 1996–2000 Calibration 1996–2000 Verification 1991–1995

wr=1.0 0.80/0.13 0.78/0.17 0.82/0.13 0.75/0.20
wr=0.65 0.79/0.12 0.77/0.16 0.81/0.13 0.74/0.19
wr=0.0 0.00/0.80 0.05/0.65 0.09/0.57 −0.01/0.77

the runoff efficiency is large and the soil moisture correlation
is practically constant. However, the limiting cases, where
only the runoff component (wr=1) or only the soil moisture
component (wr=0) is used in model calibration show signif-
icant differences in runoff and top soil moisture efficiencies.
This indicates that if only runoff is used in the calibration the
agreement between top soil moisture observations and sim-
ulations is poor and vice versa. Based on these sensitivity
tests, a weight ofwr=0.65 was selected as a representative
trade-off between the runoff and top soil moisture objectives
and was applied in the remainder of this paper for the simula-
tion of top soil moisture and runoff in the multiple objective
calibration variant.

The efficiency of the hydrologic model to simulate runoff
is presented in Table 3. The assessment of the runoff only
variant (wr=1.0, Eq. 7) shows that the medians of the runoff
model efficiencies over 148 catchments are 0.80 and 0.82 in
the calibration and 0.78 and 0.75 in the verification periods.
These simulations represent a typical setup in rainfall-runoff
modeling. A similar runoff model performance is obtained
by the multiple objective calibration variant (wr=0.65). The
medians of runoffME are only somewhat smaller, 0.79 and
0.81 in the calibration and 0.77 and 0.74 in the verification
periods. The efficiency of both calibration variants indicates
a good overall agreement between observed and simulated
runoff. Significantly poorer runoff model performance is ob-
tained by the calibration variant that uses only the top soil
moisture (wr=0.0) in hydrologic model calibration. The me-
dians of runoffME in the calibration and verification periods
are around zero, which indicates that constraining the hydro-
logic model only by the scatterometer soil moisture is not
sufficient for reliable runoff simulations. The scatter or per-
centile difference indicates a large variability of runoff model
performance between the 148 catchments; however for the
majority of the catchments the runoff model performance is
very poor.

Table 4 gives the median and percentile difference of the
correlation coefficientr estimated between observed (scat-
terometer) and simulated (hydrologic model) top soil mois-
ture. The simulations based on the model parameters con-
strained by observed runoff only (wr=1.0) do not match well
with the scatterometer estimates. The correlation coefficient
does not differ between the calibration and verification pe-

riods, but the median over 148 catchments is small, rang-
ing from 0.14 to 0.16. This indicates only a poor relation-
ship between the two top soil moisture estimates. A better
agreement is obtained by the simulations that use both runoff
and top soil moisture in the model parameter optimization
(wr=0.65). The medians ofr are 0.40 and 0.46 in the cal-
ibration periods and slightly drop to 0.33 and 0.36 in the
verification periods. As one would expect, the best agree-
ment between the top soil moisture estimates are obtained by
the simulations based on the soil moisture data calibration
(wr=0.0). The median is 0.56 and 0.47 in the calibration pe-
riods and 0.38 and 0.45 in the verification periods. For this
case, the scatter of the correlation efficiencies over the 148
catchments is the smallest, 0.14 and 0.11 in the calibration
periods and 0.14 and 0.21 in the verification periods.

Table 5 summarizes the differenceSB between model sim-
ulations and scatterometer estimates of the top soil moisture.
In contrast to the correlation coefficient, theSB difference
is not directly included in the model parameter calibration
and thus is an independent efficiency measure. Table 5 indi-
cates that the hydrologic model simulations generally over-
estimate the scatterometer observations (case whereSB>0).
The largest overestimation is observed for the calibration
variant which uses only measured runoff in parameter cali-
bration (wr=1.0). In this case, the median ofSB ranges from
21.2% to 23.3% in the calibration periods and from 20.3%
to 23.8% in the verification periods. Only slightly lower val-
ues ofSB are obtained by the multiple objective calibration
(wr=0.65); the medians range from 14.7% to 23.8% and from
19.9% to 23.4% in the calibration and verification periods,
respectively. Calibration against the measured top soil mois-
ture alone resulted in smaller difference. The median ofSB

is 3.0% and 13.7% in the calibration periods, and increases
to 18.6% and 13.8% in the verification periods.

A typical simulation of the dual layer hydrologic model for
the Furtm̈uhle catchment (256.4 km2, gauge elevation 504 m
a.s.l.) is presented in Fig. 6. The top part (Figure 6, A) shows
the simulations for a runoff only case (wr=1.0); the bottom
part (Fig. 6b) shows a multiple objective case (wr=0.65).
Both cases illustrate a representative runoff model perfor-
mance, which is very close to the median over the 148
catchments (ME=0.80). Noticeable differences are observed
for the top soil moisture agreement. The runoff only and
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Table 4. Correlationr (Eq. 5) between scatterometer and hydrologic model top soil moisture estimates evaluated for three calibration
variants: (1) runoff only calibration (wr=1.0), (2) soil moisture only calibration (wr=0.0) and (3) multiple objective calibration (wr=0.65).
The first and second values represent the median and percentile difference (p75%−p25%) over 148 catchments, respectively.

Calibration variant Calibration 1991–1995 Verification 1996–2000 Calibration 1996–2000 Verification 1991–1995

wr=1.0 0.14/0.23 0.14/0.16 0.16/0.20 0.15/0.27
wr=0.65 0.46/0.17 0.33/0.18 0.40/0.15 0.36/0.24
wr=0.0 0.56/0.14 0.38/0.14 0.47/0.11 0.45/0.21

Table 5. Soil moisture differenceSB (Eq. 6) between hydrologic model and scatterometer top soil moisture estimates evaluated for three
calibration variants: (1) runoff only calibration (wr=1.0), (2) soil moisture only calibration (wr=0.0) and (3) multiple objective calibration
(wr=0.65). The first and second values represent the median and percentile difference (p75%−p25%) over 148 catchments, respectively.

Calibration variant Calibration 1991–1995 Verification 1996–2000 Calibration 1996–2000 Verification 1991–1995

wr=1.0 21.2/18.2 23.8/14.9 23.3/16.6 20.3/14.4
wr=0.65 14.7/18.8 23.4/16.1 23.8/16.7 19.9/14.5
wr=0.0 3.0/17.8 18.6/20.3 13.7/21.8 13.8/16.3

multiple objective cases show a very poor (r=0.04) and very
good (r=0.69) agreement between the top soil moisture esti-
mates in the calibration period, respectively. The top panel of
both parts compares the soil moisture simulations and scat-
terometer observations (points) in one elevation zone and dis-
plays the observed snow depth data in October, November
and April. The soil moisture simulation dynamics is plotted
separately for the top soil layer (light brown line) and the
main soil layer (black line). The results show that the cal-
ibration of the model against runoff only does not enable a
coherent simulation of the top soil layer with the scatterom-
eter estimates. On the other hand, the simulations obtained
by the multiple objective case match very well with the scat-
terometer, except in winter and spring, when snow occurs.
As is documented in Table 1, the snow cover affects the scat-
terometer top soil moisture retrieval and often leads to the un-
derestimation of moisture available in the skin soil layer. The
comparison of the bottom soil layer dynamics indicates that
for this particular example, the model calibrated to runoff
only simulates higher relative soil moisture contents in the
spring months, while the differences to the multiple objective
case in summer are not significant. The bottom panel of each
part shows observed precipitation and compares the runoff
observations with the model simulations. Interestingly, the
plot demonstrates the influence of the soil storage state on
the runoff response of the catchment to precipitation forcing,
as the dry catchment conditions at the beginning of June re-
duce the runoff response for both cases remarkably. On the
other hand, in October, similar precipitation events caused a
significantly larger runoff response.

The spatial patterns of the runoff efficiencies (ME), soil
moisture correlations (r) and differences (SB ) efficiencies in
the calibration (1991–1995) period are presented in Fig. 7.
Top, centre and bottom panels of Figure 8 show the corre-
sponding evaluations in the verification period 1996–2000.
The spatial patterns ofME are very similar for both calibra-
tion variants and simulation periods. The hydrologic model
simulates the runoff in the wet alpine regions in the West
and Central Austria very well. The simulations are poorer
in the dry flatland regions situated mainly in the eastern part
of Austria. Obviously, a slight decrease in the runoff model
performance is observed between the calibration and verifi-
cation periods.

The main differences between the calibration variants are
the spatial patterns of the top soil moisture correlation. The
top soil moisture simulation based on parameters optimized
against runoff only does not match well with the scatterom-
eter estimates. The correlations are especially poor in the
alpine region in the West and in some catchments these are
even negative. An exception is found in the northern pre-
alpine and northern/eastern lowland areas, where the rela-
tionship between the two soil moisture estimates seems to
be more significant. Much better agreement is simulated by
the model parameters optimized to both runoff and top soil
moisture (maps on the right). The correlations are remark-
ably higher in the alpine regions in the western and central
parts of Austria. Interestingly, also for the multiple objec-
tive calibration variant a distinct boundary in the degree of
correlation exists between the central and southern parts of
the Austria. In the southern part the correlation is clearly
weaker. This may be related to the less persistent weather
patterns south of the main ridge of the Alps. South of the
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Figure 6. Comparison of scatterometer (ERS) and hydrologic model (HBV) top soil moisture 

estimates (top panel) and runoff observation and model simulation (bottom panel). The 

example shows: (A) a runoff only case (weight wr=1.0) and (B) multiple objective case 

(weight wr=0.65) for part of the calibration period in the Furtmühle catchment (256 km2). 
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Fig. 6. Comparison of scatterometer (ERS) and hydrologic model
(HBV) top soil moisture estimates (top panel) and runoff observa-
tion and model simulation (bottom panel). The example shows:(A)
a runoff only case (weightwr=1.0) and(B) multiple objective case
(weightwr=0.65) for part of the calibration period in the Furtmühle
catchment (256 km2).

Alps both precipitation and snow cover are more variable in
time than it is in the northern part of the Alps.

The maps at the bottom of Figs. 7 and 8 exhibit the spatial
variation in the soil moisture difference. In the western alpine
part of Austria, the top soil moisture simulations are very
similar with respect to the scatterometer data. In contrast, the
hydrologic model significantly overestimates top soil mois-
ture in catchments located in the southern and south-eastern
part of Austria. However, this may be also interpreted as the
underestimation of soil moisture by scatterometer retrieval in
these regions. In the verification period (Fig. 8), only a few
catchments in the western and central part of Austria have
similar top soil moisture estimates, in most of the catchments
the hydrologic model tends to overestimate the scatterometer
observations. The spatial patterns of theSB difference are
relatively similar for both calibration variants in the calibra-
tion period, but in the verification period distinct differences
are observed. There is small difference in the south-eastern

 

 

 

 

 

Figure 7. Spatial patterns of the runoff model efficiency ME (top panel), top soil moisture 

correlation r (middle panel) and the difference between the hydrologic model and the 

scatterometer top soil moisture SB (bottom panel) in the calibration period 1991-1995. The left 

panels show single objective (wr=1.0, to runoff only) efficiencies, the right panels show 

multiple objective (wr=0.65) efficiencies.  
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Fig. 7. Spatial patterns of the runoff model efficiencyME (top
panel), top soil moisture correlationr (middle panel) and the differ-
ence between the hydrologic model and the scatterometer top soil
moistureSB (bottom panel) in the calibration period 1991–1995.
The left panels show single objective (wr=1.0, to runoff only) ef-
ficiencies, the right panels show multiple objective (wr=0.65) effi-
ciencies.

catchments and the catchments located in central and West-
ern Austria. Interestingly, in some catchments, where the
correlation between the top soil moisture estimates are high
(e.g. in central Austria), the meanSB difference is larger than
20%. This indicates that, even if the scatterometer estimates
are in good agreement with the hydrologic model simula-
tions, the model may overestimate the scatterometer top soil
moisture substantially.

A more detailed analysis of the temporal and altitudinal
variability of the agreement of the two top soil moisture
estimates is presented in Figs. 9 and 10. Figure 9 shows
the seasonal variability of the correlation coefficients (top
panel) and theSB difference (bottom panel) in the calibra-
tion (1991–1995) and verification (1996–2000) periods. The
largest medians of the correlation coefficient occur between
July and October, and between April and October for the
multiple objective calibration (wr=0.65) and the soil mois-
ture only calibration (wr=0.0), respectively. The largest me-
dian in the verification period is observed in August for all
three calibration variants. The seasonal variability of the
top soil moisture difference indicates that the two calibration
variants that use runoff data (wr=1.0 andwr=0.65) overes-
timate the scatterometer top soil moisture in every season.
Interestingly the overestimation is larger in the summer than
in the winter. The difference is much smaller for the vari-
ant that uses only soil moisture (wr=0.0) in the calibration
period. However, in the verification period the difference in-
creases.

The variation of the top soil moisture correlation and dif-
ference in different elevation zones is analyzed in Fig. 10.
There does not appear to exist a consistent relationship
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Figure 8. Spatial patterns of the runoff model efficiency ME (top panel), top soil moisture 

correlation r (middle panel) and the difference between the hydrologic model and the 

scatterometer top soil moisture SB (bottom panel) in the verification period 1996-2000. The 

left panels show single objective (wr=1.0, to runoff only) efficiencies, the right panels show 

multiple objective (wr=0.65) efficiencies.  
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Fig. 8. Spatial patterns of the runoff model efficiencyME (top
panel), top soil moisture correlationr (middle panel) and the differ-
ence between the hydrologic model and the scatterometer top soil
moistureSB (bottom panel) in the verification period 1996–2000.
The left panels show single objective (wr=1.0, to runoff only) ef-
ficiencies, the right panels show multiple objective (wr=0.65) effi-
ciencies.

between correlation and altitude (middle panels). In the cal-
ibration period (left panels), there is observed a weak ten-
dency of decreasing correlation with elevation The evalua-
tion of the soil moisture difference (bottom panels) shows a
general increase with elevation for both the calibration and
verification periods. Exceptions are the highest elevation
zones, where smaller differences are observed. However,
these elevation zones are represented only by few catchments
and thus may be not considered as a representative dataset.

Together with the evaluation of hydrologic model perfor-
mance, it is also interesting to assess the effects of different
calibration settings on the uncertainty of hydrologic model
parameters. The uncertainty is defined by the correlation co-
efficient estimated between model parameters from two dif-
ferent calibration periods (1991–1995 and 1996–2000). The
comparison of the correlations (Table 6) indicates that the
use of additional top soil moisture data in model calibra-
tion reduced the uncertainty for the parameters representing
the top soil moisture and, interestingly, snow cover dynam-
ics. The largest correlation is obtained for the snow correc-
tion factorSCF(0.83) and the maximum capacity of the top
soil reservoirLskin (0.70). The most uncertain parameters
are the transfer scaling factorαm in the runoff only variant
(wr=1.0), the limit for potential evaporation ratioLP/FC in
the multiple calibration (wr=0.65 variant) and the runoff stor-
age coefficientK0 in the soil moisture only variant (wr=0.0).
An example of the variability of the model parameters that
represent the top soil layer of the hydrologic model is pre-
sented in Fig. 11. Figure 11 shows the cumulative distribu-
tion functions of theLskin, φ andαm model parameters ob-
tained by different calibration variants (wr=1.0,wr=0.65 and

 

 

 

 

 

Figure 9. Correlation coefficient r and the SB difference between scatterometer and hydrologic 

model top soil moisture simulations in the calibration (left) and verification (right) periods 

analysed by season. The simulation represents three calibration variants: (1) runoff only 

calibration (wr=1.0), (2) soil moisture only calibration (wr=0.0) and (3) the multiple objective 

calibration (wr=0.65). The correlation r and SB difference represent the median over 148 

catchments. 
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Fig. 9. Correlation coefficientr and theSB difference between scat-
terometer and hydrologic model top soil moisture simulations in the
calibration (left) and verification (right) periods analysed by season.
The simulation represents three calibration variants: (1) runoff only
calibration (wr1.0), (2) soil moisture only calibration (wr=0.0) and
(3) the multiple objective calibration (wr=0.65). The correlationr
andSB difference represent the median over 148 catchments.

 

 

 

 

 

Figure 10. Correlation coefficient r and the SB difference between scatterometer and 

hydrologic model top soil moisture simulations in the calibration (left) and verification (right) 

periods analysed by altitude. The simulation represents three calibration variants: (1) runoff 

only calibration (wr=1.0), (2) soil moisture only calibration (wr=0.0) and (3) the multiple 

objective calibration (wr=0.65). The correlation r and SB difference represent the median over 

148 catchments. 
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Fig. 10. Correlation coefficientr and theSB difference between
scatterometer and hydrologic model top soil moisture simulations
in the calibration (left) and verification (right) periods analysed by
altitude. The simulation represents three calibration variants: (1)
runoff only calibration (wr=1.0), (2) soil moisture only calibra-
tion (wr=0.0) and (3) the multiple objective calibration (wr=0.65).
The correlationr andSB difference represent the median over 148
catchments.
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Table 6. Parameter uncertainty evaluated for three calibration
variants: (1) runoff only calibration (wr=1.0), (2) soil moisture
only calibration (wr=0.0) and (3) multiple objective calibration
(wr=0.65). The uncertainty is defined by the correlation coefficient
between the model parameters calibrated for two independent peri-
ods (1991–1995 and 1996–2000).

Model parameter
Calibration variant

wr=1.0 wr=0.65 wr=0.0

SCF[−] 0.72 0.83 0.23
DDF [mm/◦C day] 0.55 0.64 0.31
TM [◦C] 0.45 0.50 0.34
Lskin[mm] 0.23 0.70 0.38
αm [mm/day] 0.14 0.32 0.09
φ [−] 0.30 0.44 0.10
LP/FC [−] 0.63 0.03 −0.04
FC [mm] 0.49 0.45 0.13
β [−] 0.56 0.32 0.10
K0 [days] 0.25 0.31 −0.04
K1 [days] 0.63 0.59 −0.10
K2 [days] 0.42 0.38 −0.09
CP [mm/day] 0.57 0.57 0.14
LSUZ [mm] 0.44 0.37 −0.13

wr=0.0) in two independent calibration periods (1991–1995
and 1996–2000). From their comparison it is clear that the
most noticeable differences between the calibration variants
are observed for the transfer factorαm. The model calibra-
tion with the use of scatterometer data (wr=0.65 andwr=0.0
variants) resulted in generally smaller transfer parameter val-
ues than obtained by traditional runoff only calibration. On
the other hand, the maximum storage capacityLskin and the
fraction of actual evaporationφ parameters are better iden-
tifiable. The medians ofLskin andφ parameters are approx-
imately between 3 and 5 mm and between 0.88 and 0.90 in
different calibration periods and variants, respectively.

5 Discussion and conclusions

This study compares top soil moisture estimates from the
scatterometer and a conceptual hydrologic model. The hy-
drologic model simulates the soil moisture from observed
daily air temperature and precipitation using model param-
eters, which need to be estimated by the calibration. The
relative top soil moisture is obtained by relating the amount
of water stored in the top soil layer (reservoir) to a model pa-
rameterLskin which defines the maximum capacity of that
reservoir. On the other hand, the scatterometer estimates
are based on the normalization of a backscatter signal which
is rescaled between the driest and wettest observations in
a long-term period. This indicates that two different top
soil moisture estimates used in this study are not identically

 

 

 

 

 

Figure 11. Cumulative distribution functions (CDFs) of the top soil layer model parameters 

(Lskin, φ and αm) obtained by three calibration variants: (1) runoff only calibration (wr=1.0), (2) 

soil moisture only calibration (wr=0.0) and (3) the multiple objective calibration (wr=0.65). 

CDFs represent 148 catchments in two calibration periods.  
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Fig. 11. Cumulative distribution functions (CDFs) of the top soil
layer model parameters (Lskin, φ andαm) obtained by three calibra-
tion variants: (1) runoff only calibration (wr=1.0), (2) soil moisture
only calibration (wr=0.0) and (3) the multiple objective calibration
(wr=0.65). CDFs represent 148 catchments in two calibration peri-
ods.

defined. The quantitative assessment of their differences
showed that the hydrologic model generally simulates larger
relative top soil moisture than what the scatterometer data
indicate. This is an opposite finding to the studies of Ce-
ballos et al. (2005) and Wagner et al. (1999), who compared
the scatterometer to field soil moisture measurements. The
differences found in this study, probably, are partly related
to the different soil moisture definition, and partly related to
the parameterization of the dual layer soil moisture scheme
at a daily time step. Surface soil moisture tends to vary con-
siderably in time. It has been shown that after only about
12 h difference in scatterometer observation time, the RMSE
(root mean square error) of soil moisture estimation increases
rapidly by more than 50% of its initial value (Naeimi et al.,
2008b). In a near future, we plan to simulate the soil mois-
ture on an hourly time step, which seems to be more rep-
resentative for a direct comparison of soil moisture values,
especially for a more continuous emptying of the top soil
moisture reservoir in the dual layer scheme.

The evaluation of the correlation between scatterometer
and hydrologic model top soil moisture estimates indicated
that in the flat regions of Austria, there is a close agreement in
the tendency between the two datasets. On the other hand, in
the alpine regions with complex terrain it is difficult to derive
regionally consistent soil moisture estimates. Part of the poor
correlations in the Alps may be due to the rugged terrain and
forest cover which may make the scatterometer data less ac-
curate than in the flatlands. The low correlations may also be
due to unavailability of enough daily SCAT data especially in
the calibration period of 1991–1996 and also only using the
summer scatterometer data. This will reduce the seasonal
sample variance which, with a given error variance, will de-
crease the correlation coefficient. This problem will be di-
minished in the future studies by using ASCAT data in cali-
bration procedure, which provide uninterrupted data acquisi-
tion with more than twice data coverage than SCAT. Clearly,
the soil moisture estimates from the hydrological simula-
tions are also associated with considerable uncertainty. One
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would, however, not expect major differences in the uncer-
tainty between the Alpine and lowland parts of Austria.

In this study we applied a parsimonious dual layer con-
ceptual hydrologic model for top soil moisture simulations.
When compared its efficiency to a classic single layer soil
representation tested in Parajka et al. (2006) we found that
the top model layer simulations fits more consistently to scat-
terometer values than does the single layer model to root
zone scatterometer estimates. The median correlation coeffi-
cient over 148 catchments increased from 0.35 for the single
layer to more than 0.46 for the dual layer model represen-
tations in the calibration period and from 0.25 (single layer)
to 0.33 (dual layer) in the verification period. The results
show that using SCAT soil moisture data in calibration pro-
cess does not degrade the runoff model performance. The
dual layer hydrologic model still performed slightly better,
the median of runoff efficiency slightly increased from 0.78
(single layer) to 0.79 (dual layer) in the calibration period
and from 0.76 (single layer) to 0.77 (dual layer) in the verifi-
cation period.

The characterisation and matching of the multiscale vari-
ability of soil moisture is a challenging task, which, for
example, can be investigated within the context of spatio-
temporal filters, as addressed by Western et al. (2002, 2003)
and Skøien and Blöschl (2006). Although it is not possible to
define the soil moisture ground truth at the catchment scale,
the comparison of two soil moisture datasets seems to be ben-
eficial from both the remote sensing and hydrologic model-
ing perspectives. Our findings show that for remote sensing
it is important to develop a more robust masking procedure in
the scatterometer retrieval algorithm. The existence of snow
or frozen ground (indicated e.g. by negative air temperatures)
tends to decrease the scatterometer top soil moisture, which
may bias the assimilation of scatterometer soil moisture into
a hydrologic model. These findings are consistent with the
conclusions of Pellarin et al. (2006) who suggested to apply a
more robust freezing soil detection procedure in the retrieval
algorithm.

From the hydrologic model perspective it is clear that the
added value of scatterometer is especially in more robust es-
timation of individual water balance components. The use
of additional scatterometer data in model calibration tends to
reduce the parameter uncertainty of the top soil moisture and
snow dynamics modules of the hydrologic model. We found
that the improved top soil moisture agreement in the multi-
ple objective calibration setting does not have any significant
effects on the runoff model efficiency and thus provides an
option for more robust water balance simulations in change
assessment studies. In our next effort we plan to investigate
this potential in more detail and to assimilate the spatial pat-
terns of scatterometer soil moisture into a distributed hydro-
logic model.
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