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• Decline of baseflow P concentration in
the 1990s due to point discharge reduc-
tion.

• Despite reduced emissions, high loads
in the 1990s due to pool of P rich sedi-
ments.

• Sharp and enduring decline of TP con-
centration at all flow levels after 2002
flood.

• Depletion of P rich sediments and long-
lasting low riverine loads after 2002
flood.

• Effects of point discharge reduction vis-
ible only after depletion of P rich pool.
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Patterns of changes in the concentration of total and soluble reactive phosphorus (TP, SRP) and suspended sed-
iments at different flow levels from 1991 to 2013 in the Austrian Danube are statistically analyzed and related to
point and diffuse emissions, as well as to extreme hydrological events. Annual loads are calculated with three
methods and their development in time is examined taking into consideration total emissions and hydrological
conditions. The reduction of point discharges achieved during the 1990s was well translated into decreasing TP
and SRP baseflow concentrations during the same period, but it did not induce any change in the concentrations
at higher flow levels nor in the annual transport of TP loads. A sharp and long-lasting decline in TP concentration,
affecting all flow levels, took place after a major flood in 2002. It was still visible during another major flood in
2013, which recorded lower TP concentrations than its predecessor. Such decline could not be linked to changes
in point or diffuse emissions. This suggests that, as a result of the flood, the river system experienced a significant
depletion of its in-stream phosphorus stock and a reduced mobilization of TP rich sediments afterwards. This
hypothesis is corroborated by the decoupling of peak phosphorus loads from peak maximum discharges after
2002. These results are highly relevant for the design of monitoring schemes and for the correct interpretation
of water quality data in terms of assessing the performance of environmental management measures.
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1. Introduction

The Danube is the second largest river in Europe and is responsible
for almost 60% of the freshwater and for the majority of sediments
and nutrients entering the Black Sea (Maksimovic and Makropoulos,
2002; Schreiber et al., 2005). Consequently its elevated transport of
phosphorus was identified as one of the main causes of the severe
eutrophication that affected the sea during the 1980s and early 1990s
(Kroiss et al., 2006). The control of phosphorus pollution in the Danube
is therefore of primary importance, both to sustain the ecological health
of the river itself, and to reduce the loads transported downstream.

Austria accounts for 10% of the total area of the Danube Basin, which
drains more than 96% of its territory (ICPDR, 2014a). In the last 30 years
the country has undertaken several efforts to reduce phosphorus
emissions. In the 1980s the use of phosphates in detergents was
dramatically reduced (Behrendt et al., 2005) and in the 1990s the
Austrian edict BGBl. Nr. 180/1991, later replaced by the BGBl. Nr.
210/1996, introduced the mandatory removal of phosphorus in waste-
water treatment plants (WWTP). Moreover, the agri-environmental
program PULwas launched in the year 2000 to address diffuse nutrient
losses (BMLFUW, 2000). In addition to anthropogenic changes, the
Upper Danube Basin was also exposed to extreme hydrological condi-
tions. After a succession of flood-poor decades, with the exception of a
minor event in 1991, the Austrian Danube was hit first in August 2002
by a flood that, due to its extension and duration,was termed a “century
flood”, and then in June 2013 by one of the largest floods to have taken
place in the last two centuries (Blöschl et al., 2013). In 2003, on the con-
trary, the whole Basin experienced a pronounced drought, with below-
average rainfalls and above-average temperatures. The relative precip-
itation recorded in Austria in that year, for example, corresponded to
74% of the long-term annual average (ICPDR, 2014c).

At the beginning of the 1990s an extensive monitoring network was
set up by two independent agencies, the Austrian Federal Ministry of
Agriculture, Forestry, Environment andWaterManagement (BMLFUW)
and the International Commission for the Protection of the Danube
River (ICPDR). It is thus feasible to examine in detail this period of com-
bined anthropogenic changes and extreme hydrological regimes, which
represent an exceptional opportunity for exploring interweaving
causalities in a large river.

The link between improved wastewater phosphorus removal and
decline in phosphorus concentration in European rivers has been dem-
onstrated and quantified in previous studies (Neal et al., 2010; Räike
et al., 2003). Conversely, investigations dealing with episodic flood
events, total emissions, and their relationship have focused on riverine
loads (mass time−1), rather than on concentrations (mass volume−1).
Behrendt andOpitz (2000) observed, across 100 basins in Europe, a con-
siderable discrepancy between total emissions and measured transport
loads, with the latter being significantly lower. They found that the
difference increased as a function of the specific runoff of the basins.
Similar findings were reported by Zessner and Kroiss (1999) for the
Upper Danube. The reason for such discrepancies lies in the retention
process, which has been increasingly recognized as a relevant mecha-
nism to be further investigated and included in river basin models (de
Klein and Koelmans, 2011; Venohr et al., 2011). The retention of phos-
phorus takes place essentially through deposition and algae growth.
The stock generated is then exposed to remobilization during flood
events, when peaks of phosphorus are transported downstream and
exported to river banks and flooded areas (Zessner et al., 2005; House
et al., 1997; Dorioz and Ferhi, 1994; Johnson et al., 1976). According to
Stamm et al. (2014), this depletion is replaced by the deposition of par-
ticulate phosphorus during the recessional part of the storms, which
represents a renewed internal source of baseflowphosphorus. Although
this might hold true for small episodic events, the impact of a major
flood could be more intense and exert a more profound impact on
both the in-stream stock and the concentration, with consequences
not only for the peak transport of phosphorus to downstream standing
water bodies and to the lateral river system, but also for the river
ecology itself.

In this study, time series of water quality data of the Upper Danube
are examined to identify patterns of change in phosphorus concentra-
tion, and to link them to anthropogenically driven changes and to
extreme hydrological conditions. The aim of the work is to assess the
performance and effectiveness of environmental management strate-
gies, and to investigate the short-term and long-term impact of large
episodic events on the in-stream phosphorus concentration and on
the stock of the river system.

To gain a deeper insight into the drivers of shifts in concentration,
not only is total phosphorus (TP) analyzed, but also soluble reactive
phosphorus (SRP, equivalent to orthophosphate) and suspended
sediments (SS). SRP contributes to identifying the impact of point
emissions, because it is typically the prevalent phosphorus species
inWWTP effluents (Jarvie et al., 2006). SS provides further information
regarding diffuse pathways, because particulate-bound phosphorus is
the predominant species transported by storm-dependent agricultural
runoff and erosion processes (Withers and Jarvie, 2008).

2. Materials and methods

2.1. Data sets

TheDanubewas analyzed at its entrance into Austrian territory from
Germany (Inflow) and at its exit from Austria (Outflow) (Fig. 1). This
enables the phosphorus contribution within the Austrian catchment to
be determined.

The study used a collection of different data sources, namely theH2O
database created and maintained since 1991 by BMLFUW (2014b), and
two ICPDR databases, one obtained through a first campaign performed
from 1992 to 1998 (Bucharest Declaration data set) and the other
through the Transnational Monitoring Network (TNMN) launched in
1996 (ICPDR, 2014b). In addition, for the Outflow a specific sample
collected during the flood of August 2002 (Zessner et al., 2005) and a
data set of semi-continuous measurements for the entire year 2013
(BMLFUW, 2013) were available (Tables 1 and 2). Since 1991 the mon-
itoring of surface and groundwater water quality in Austria has been
regulated by federal legislation (BGBL Nr. 338/1991 replaced by BGBl.
II Nr. 479/2006) that specifies the standard analytical procedures to be
followed for each parameter. With respect to total phosphorus and
phosphorus compounds, at the beginning of the 1990s analyses
were required to comply with the Standard Ö-NORM M 6237:1986,
which was then replaced by ISO 6878:1998 and later revised by ISO
6878:2004. These standards all maintained the spectrometric deter-
mination using ammonium molybdate as basis. Although accredited
laboratories are entitled to apply differentmethods, they are required to
prove their equivalence to the standard procedures. These protocols
were applied by all data sources considered here. This ensures a sub-
stantial consistency of the analytical methods throughout the studied
time period, although some minor variations cannot be entirely
excluded. In addition, the analyses of each sample have been run in
triplicate in accordance with the aforementioned protocols, with
the exception of the data set of Zessner et al. (2005), which relies
on single tests.

2.2. Data set subdivision in time periods and flow intervals

Phosphorus concentration and species fractionation can vary largely
as a function of flow levels due to differing primary pathways and driv-
ing natural processes. TP concentration generally rises at increasing
flow levels due to the higher transport of particulate-bound phosphorus
in more turbulent conditions (Zessner and Kroiss, 1999). On the con-
trary, SRP concentration is expected to be higher at baseflow conditions,
because its primary pathway is the quasi-constant WWTP effluent dis-
charge, which becomes more heavily diluted at higher flows (Jarvie



Fig. 1.Map of the Upper Danube Basin and of the monitoring stations located at the Austrian Inflow and Outflow.
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et al., 1997). To preserve the information contained in these differences,
the flow levels were subdivided into intervals, following the flow dura-
tion curve schemesuggested by EPA (2007). Theflowswere categorized
according to the percentage of exceedance, as follows: High flows
(0–10%), Moist conditions (10–40%), Mid-range flows (40–60%), Dry
conditions (60–90%), and Low flows (90–100%). The availability of data
during the two flood events in 2002 and 2013 at the Outflow also en-
ables the investigation of the differences and changes in time in high
flow conditions, which are especially important for the transport of
phosphorus. Thus, the interval High flows for the Outflow was further
subdivided into three ranges of equal length: High flows, Very high
flows, and Extremely high flows, 10,570 m3 s−1 being the maximum
daily discharge measured within the time series. The calculation of the
cumulative frequency was based on two data sets of daily mean
discharges measured at the same locations, covering the periods
1985–2011 and 1977–2013 for the Inflow and Outflow, respectively
(BMLFUW, 2014a). The flow intervals obtained following this proce-
dure are shown in Table 3.

Studies have shown that low frequency sampling can lead to
large errors in the calculation of riverine phosphorus loads (Johnes,
2007; Cassidy and Jordan, 2011). Similar findings were presented
by Skarbøvik et al. (2012) with regard to estimating the mean concen-
tration of suspended sediments, which could also be extended to partic-
ulate contaminants like phosphorus. Thus, the fact that the available
data sets mostly rely on monthly or bi-weekly measurements impedes
a reliable analysis of rapid inter-annual variations. This study focuses
instead on longer-term changes, for which purpose the time series was
subdivided into periods, based on the rationales described in Table 4.
Table 1
Data sets employed for the Inflow of the Danube into Austria.

Station Station code Distance from mouth [km

H2O — Jochenstein FW40607017 2204
H2O — Obernzell FW40607037 2210
ICPDR Bucharest — Jochenstein D2130 2204
ICPDR TNMN — Jochenstein Austria AT1 2204
ICPDR TNMN — Jochenstein Germany D02 2204
2.3. Consistency and combination of the data sets

The data sets were statistically compared, firstly to verify the consis-
tency among different stations and monitoring agencies, and secondly
to determine the appropriateness of their combination. The K-sample
Anderson–Darling test (Scholz and Stephens, 1987) was chosen to test
whether at each flow interval and time period the different samples
can be considered to belong to the same distribution. It was applied to
the three flow ranges with highest data availability, namely Dry condi-
tions, Mid-range flows, and Moist conditions, with the assumption that
they be representative for the whole flow duration curve. For the Out-
flow and the period T2, the samples within High flows were also tested
to include the data set of Zessner et al. (2005). The standard statistical
significance levels associated to p values were adopted: significant
(p b 0.05), very significant (p b 0.01), and highly significant (p b 0.001).

As shown in Tables 5 and 6, the data sets generally present a good
level of consistency (i.e. p values greater than 0.05). Therefore, none of
the data setswas dismissed and allweremerged to obtain thefinal sam-
ples shown in Tables 7 and 8. This notwithstanding, the analyses of the
studywere reiterated alternately removing the data sets that presented
some discrepancies, in order to assess their actual impact on the results
and on the conclusions.

2.4. Analysis of change in time

The combined data sets (Tables 7 and 8) were statistically analyzed
to examine the behavior in time of the TP, SRP and SS mean concentra-
tions. The null hypothesis H0 was that the mean concentrations
] Sampling period Sampling frequency [b]

Jul. 1991–June 1995 Monthly
Feb. 1996–Dec. 2006 Monthly
Jan. 1992–Feb. 1998 Monthly
Jan. 1996–Dec. 2011 Monthly (1996–2006) 3 per month (2007–2011)
Jan. 1996–Dec. 2011 Bi-weekly



Table 2
Data sets employed for the Outflow of the Danube from Austria.

Station Station code Distance from mouth [km] Sampling period Sampling frequency [b]

H2O — Wolfsthal FW31000027 1874 July 1991–Dec. 2002 Monthly (1991–2000); bi-weekly (2001, 2002)
H2O — Deutsch Altenburg FW31000017 1887 July 1991–May 1995 Monthly
H2O — Wildungsmauer FW31000187 1895 Jan. 1996–Dec. 2012 Monthly
ICPDR Bucharest — Wolfsthal D1840 1873 Jan. 1992–Feb. 1994 Monthly
ICPDR TNMN — Wolfsthal AT4 1874 Jan. 1996–Dec. 2005 Monthly (1996–1998); bi-weekly (1999–2005)
ICPDR TNMN — Hainburg AT6 1879 Jan. 2006–Dec. 2011 Bi-weekly
Zessner et al. (2005) – 1930 Aug. 2002 2–8 per day
BMLFUW — Wolfsthal – 1879 Jan. 2013–Dec. 2013 Bi-hourly
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calculated at every flow range did not change significantly from each
period to the following one. It is therefore a step trend hypothesis,
which is tested through a t-test for the significance of the difference
between the means of two independent samples (Hirsch et al., 1991).
In view of the diverse sample size and possibly unequal variance, the
Welch's t-test was selected (Welch, 1947).

2.5. Load calculation

The calculation of annual TP loads was carried out with three differ-
ent methods:M1— Linear, M2 — ICPDR, and M3— Flow intervals.

2.5.1. Method M1— Linear
The first calculation procedure (Eq. (1)) is a widely used method,

and was applied by Littlewood and Marsh (2005) and by Johnes (2007)
as the reference to test other methodologies.

L ¼ K∑n
i¼1 CiQið Þ

∑n
i¼1 Qið Þ � Qr ð1Þ

Annual loads L are calculated as the product of sampled instanta-
neous concentration Ci and discharge Qi (n is the number of samples
in a year), divided by the sum of sampled discharges and multiplied
by the average annual dischargeQr, K being a factor to account for mea-
surement units and the duration of the period.

This method has a considerable shortcoming due to the underlying
assumption of a linear relationship between load and discharge. As
this is usually depicted by an exponential function, Eq. (1) will tend to
deliver overestimations when data collected at high flow conditions or
during storm events are included, as demonstrated by Cassidy and
Jordan (2011).

2.5.2. Method M2— ICPDR
Eq. (2) shows the calculation procedure officially selected and

applied by ICPDR (2000).

Cm ¼ ∑m
i¼1 CiQið Þ

∑m
i¼1 Qið Þ Lm ¼ KCmQm L ¼

X12

m¼1

Lm ð2Þ

The method is based on the calculation of monthly loads Lm, which
are obtained as the product of average monthly discharge Qm and aver-
agemonthly concentration Cm (m is the number of samples permonth),
K being a factor to account for measurement units and the number of
days in each month. Cm is the product of the measured concentrations
and discharge values, divided by the sum of sampled discharges.
Table 3
Flow intervals (m3 s−1) for the Inflow and the Outflow.

Location Low flows Dry conditions Mid-range flows Moist

Inflow b800 800–1100 1100–1400 1400–
Outflow b1100 1100–1600 1600–2000 2000–
In comparison to M1 — Linear, this procedure adds the inclusion of
seasonality. Therefore, it indirectly takes into account, to a certain
degree, the relationship between TP concentration and discharge.

2.5.3. Method M3 — Flow intervals
A specific calculation procedure was developed on the one hand to

appropriately consider the relationship between TP concentration and
discharge, and on the other hand to examine the impact that the shifts
in concentration exerted on the total riverine transport. As shown in
Eq. (3), the annual loads L are obtained as the sum of daily loads, calcu-
lated as the product of each daily discharge and themean concentration
of the respective flow interval (Ql, Qd, Qm, Qmo, Qh, Qv, Qe being daily dis-
charge values and μl, μd, μm, μmo, μh, μv, μe mean concentrations at Low
flows, Dry conditions, Mid-range flows, Moist conditions, High flows, Very
high flows, and Extremely high flows, respectively), where K is a factor
to account for measurement units. For each year, the mean concentra-
tions of the corresponding time period are applied.

L ¼ Kð
Xn

l;d;m;mo;h;v;e¼0

Qlμ lð Þ þ Qdμdð Þ þ Qmμmð Þ þ Qmoμmoð Þþ

þ QhμhÞ þ Qvμvð Þ þ Qeμeð ÞÞ

The results of the three methods are compared to the loads that
ICPDR has calculated, based on M2 — ICPDR and using exclusively the
TNMN data sets (ICPDR, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007, 2008, 2009, 2010, 2011).

3. Results and discussion

3.1. Shifts in phosphorus concentration

3.1.1. Reduction of point emissions during the 1990s
The analysis at the Inflow shows that, from the first to the second

half of the 1990s, a highly significant decline of themean TP concentra-
tion took place at Low flows, from 0.10 to 0.07mg L−1, whereas at other
flow ranges no variation was found (Fig. 2a). At the Outflow the change
wasmore pronounced, with a clear reduction of the TP concentration at
Low flows (from 0.12 to 0.08 mg L−1), Dry conditions (from 0.10 to
0.09 mg L−1), and Mid-range flows (from 0.13 to 0.08 mg L−1)
(Fig. 2b). The analysis of SRP depicts similar patterns. At the Inflow
the calculatedmean SRP concentrations at Low flows and Dry conditions
both decreased from 0.05 mg L−1 to 0.03 mg L−1, but this was found to
be statistically significant only for the latter, whereas for Low flows the
samples were too small and displayed too much variability (Fig. 3a).
At the Outflow the decline was larger and broader, with a reduction at
conditions High flows Very high flows Extremely high flows

2100 N2100 – –

3000 3000–5500 5500–8000 N8000



Table 4
Time periods and rationale for their categorization.

Period Time range Rationale

T1 Jan 1991–Dec 1995 Starting phase of the implementation of the
regulation on wastewater phosphorus removal

T2 Jan 1996–Aug 2002 Mature phase of implementation of the
regulation on wastewater phosphorus removal;
flood in August 2002

T3 Sep 2002–Dec 2007 Short-term effects of 2002 flood
T4 Jan 2008–Dec 2012 Long-term effects of 2002 flood
T5 Jan–Dec 2013 Flood in June 2013; semi-continuous data
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Low flows from 0.09 to 0.04 mg L−1, at Dry conditions from 0.06 to
0.03 mg L−1, at Mid-range flows from 0.05 to 0.03 mg L−1, and at
Moist conditions from 0.04 to 0.03 mg L−1 (Fig. 3b).

Such shifts reflect the improvements achieved during this period in
the efficiency of phosphorus removal inWWTP. AustrianWWTP gradu-
ally increased their average transfer of phosphorus contained in receiv-
ing wastewater to sewage sludge from 50% in 1995 to 82% in 2001
(BMLFUW, 1996, 2008). In the first half of the 1990s, German WWTP
achieved the target of maximum1mg L−1 TP in the effluent, equivalent
to an approximately 80% removal rate (TMLNU, 2009), which explains
the delayed decrease of TP and SRP concentrations at the Outflow
when compared to the Inflow.

The link between the diminished TP concentration and the reduced
point emissions is supported by the fact that the decline was detected
only at low up to mid-flow conditions, whereas at higher flows it
remained constant or even increased, since quasi-constant effluent
discharge from WWTP becomes less diluted in drier conditions. This
causality is evidenced by the reduction of SRP, a typically dominant
phosphorus species in WWTP effluents.

The decline of TP and SRP concentrations in low flow conditions, as a
result of the reduced phosphorus load in WWTP effluents, is in accor-
dancewith the findings of Neal et al. (2010), which showed a consistent
decrease of SRP in the River Thames, induced by the augmented phos-
phorus removal in WWTP and mostly visible at baseflow conditions.
Although the observed trend was similar, the range of variation was
very different, since the SRP concentration in the Thames started from
1.6 mg L−1 in 1997 and reached approximately 0.4 mg L−1 in 2006,
still 10 times higher than in the Upper Danube. The reasons for these
large differences may include the higher population density in the
catchment of the River Thames and the still relatively low phosphorus
removal rate in the UK (approximately 57% in the year 2009) (Cooper
and Carliell-Marquet, 2013).

3.1.2. Consequences of the major flood of August 2002
The analysis shows that, after the major flood of August 2002, a sig-

nificant and long-lasting decline in the TP concentration occurred. The
mean TP concentration at the Inflow varied from 0.07 mg L−1 at Low
flows to 0.13 mg L−1 at High flows before the flood, but ranged from
Table 5
Results of the K-sample Anderson–Darling test applied to the TP data sets available for the Inflow
indicated in bold and sample size in parentheses.

Period Data set A Data set B

T1 H2O — Jochenstein ICPDR Bucharest — Joch.
T2 H2O — Obernzell ICPDR Bucharest — Joch.

H2O — Obernzell ICPDR TNMN — Joch. A01
H2O — Obernzell ICPDR TNMN — Joch. D02
ICPDR Bucharest — Joch. ICPDR TNMN — Joch. A01
ICPDR Bucharest — Joch. ICPDR TNMN — Joch. D02
ICPDR TNMN — Joch. A01 ICPDR TNMN — Joch. D02

T3 H2O — Obernzell ICPDR TNMN — Joch. A01
H2O — Obernzell ICPDR TNMN — Joch. D02
ICPDR TNMN — Joch. A01 ICPDR TNMN — Joch. D02

T4 ICPDR TNMN — Joch. A01 ICPDR TNMN — Joch. D02
0.06 mg L−1 to 0.08 mg L−1 afterwards (Fig. 2a). At the Outflow this
effect was even more visible. The mean TP concentrations reached
very high values of 0.23, 0.54 and 1.25 mg L−1 at High flows, Very high
flows and Extremely high flows, respectively. After the flood, the range
at all flow levels was reduced to 0.05–0.08mg L−1 (Fig. 2b). The decline
was not only sharp, but also enduring. At both locations the T4 period
(2008–2012) was characterized by only slight and inconsistent in-
creases, found to be significant only at Moist conditions for the Inflow
(Fig. 2a) and at High flows for the Outflow (Fig. 2b). Furthermore, the
analysis of the semi-continuous data set collected at the Outflow in
2013 shows that the TP concentration persisted at the same low levels
at Dry conditions and Mid-range flows (Fig. 2b). It increased at Moist
conditions and High flows, but never reaching the higher values mea-
sured before and during the 2002 flood. The repetition of the analyses
alternately excluding the data sets that had presented problems of
inconsistencies led to the same results, which means that the few
detected discrepancies were offset by the extent of the changes in
time. The only effect on the results was a slightly lower statistical signif-
icance caused by the reduced size of the samples.

The observed shift in TP concentration cannot be explained through
a reduction of point emissions, because in 2002 both Germany and
Austria had already achieved a very high removal rate of phosphorus
from wastewater – more than 80% – leaving scope for only minor
further improvements. This is confirmed by the behavior of the mean
SRP concentration, which at both locations remained almost constant
in the range of 0.03–0.04 mg L−1 at all flow intervals (Fig. 3a and b).

On the other hand, the analysis of the SS (Fig. 4a and b) does not pro-
vide any evidence that, following the flood, the Danube experienced
a reduced turbidity and transport of sediments, which could have
explained the decrease of TP concentration, especially at high flow con-
ditions. Therefore, it was the phosphorus content of the sediments that
declined. The very high amount of phosphorus accumulated through
decades of fertilization in Austrian agricultural soils (Egle et al., 2014)
excludes the possibility that the phosphorus content of eroded sedi-
ments decreased significantly. According to Behrendt et al. (2005),
diffuse phosphorus emissions in the Danube river system remained rel-
atively constant during the last decades of the 20th century. With
respect to the early 2000s, Zessner et al. (2011b) carried out a detailed
study aimed at assessing the impact of the agri-environmental program
ÖPUL, launched in 2000, on nutrient emissions in Upper Austria. The
most important measures implemented were the use of winter cover
crops and the strip-till practice, both aimed at preventing soil loss.
Given these measures can decrease emissions up to 50%–70% and that
they were applied respectively to 20% and 10% of available arable
land, it was estimated that their implementation led to a total decrease
of approximately 10% of the phosphorus emissions. However, this 10%
reduction regards exclusively the emissions associatedwith agricultural
erosion, and this in turn accounts for approximately 40% of total diffuse
phosphorus emissions (the rest being mainly split among urban runoff,
natural erosion and groundwater pathways). In view of the general
; H0: samples are drawn from the same distribution. Statistically significant differences are

Dry conditions Mid-range flows Moist conditions

p N 0.05 (10–7) p N 0.05 (10–5) p N 0.05 (12–7)
p N 0.05 (16–8) p N 0.05 (21–7) p N 0.05 (26–5)
p N 0.05 (16–19) p N 0.05 (21–22) p N 0.05 (26–20)
p N 0.05 (16–30) p N 0.05 (21–40) p N 0.05 (26–52)
p N 0.05 (8–19) p N 0.05 (7–22) p N 0.05 (5–20)
p N 0.05 (8–30) p N 0.05 (7–40) p N 0.05 (5–52)
p N 0.05 (19–30) p b 0.05 (22–40) p N 0.05 (20–52)
p N 0.05 (13–27) p b 0.001 (8–19) p N 0.05 (15–24)
p N 0.05 (13–26) p b 0.05 (8–5) p b 0.01 (15–6)
p N 0.05 (27–26) p N 0.05 (19–5) p N 0.05 (24–6)
p N 0.05 (48–47) p N 0.05 (25–25) p N 0.05 (37–37)



Table 6
Results of the K-sample Anderson–Darling test applied to the TP data sets available for the Outflow; H0: samples are drawn from the same distribution. Statistically significant differences
are indicated in bold and sample size in parentheses.

Period Data set A Data set B Dry conditions Mid-range flows Moist conditions High flows [b]

T1 ICPDR Bucharest — Wolfsthal H2O — Wolfsthal p b 0.01 (10–16) p N 0.05 (5–6) p N 0.05 (9–13) –

ICPDR Bucharest — Wolfsthal H2O — Deutsch-Altenburg p b 0.001 (10–10) p N 0.05 (5–6) p N 0.05 (9–11) –

H2O — Wolfsthal H2O — Deutsch-Altenburg p N 0.05 (16–10) p N 0.05 (6–6) p N 0.05 (13–11) –

T2 H2O — Wolfsthal ICPDR TNMN — Wolfsthal p N 0.05 (29–31) p N 0.05 (33–32) p N 0.05 (44–46) p N 0.05 (14–16)
H2O — Wolfsthal H2O — Wildungsmauer p N 0.05 (29–20) p N 0.05 (33–23) p N 0.05 (44–19) p N 0.05 (14–7)
ICPDR TNMN — Wolfsthal H2O — Wildungsmauer p N 0.05 (31–20) p N 0.05 (32–23) p N 0.05 (46–19) p N 0.05 (16–7)
H2O — Wolfsthal Zessner et al. (2005) – – – p N 0.05 (14–7)
ICPDR TNMN — Wolfsthal Zessner et al. (2005) – – – p N 0.05 (16–7)
H2O — Wildungsmauer Zessner et al. (2005) – – – p N 0.05 (7–7)

T3 H2O — Wolfsthal ICPDR TNMN — Wolfsthal – – p N 0.05 (4–24) –

H2O — Wolfsthal H2O — Wildungsmauer – – p N 0.05 (4–17) –

ICPDR TNMN — Wolfsthal H2O — Wildungsmauer p N 0.05 (26–17) p b 0.05 (14–13) p N 0.05 (24–17) –

H2O — Wolfsthal ICPDR TNMN — Hainburg – – p N 0.05 (4–14) –

ICPDR TNMN — Wolfsthal ICPDR TNMN — Hainburg p N 0.05 (26–10) p b 0.05 (14–10) p N 0.05 (24–14) –

H2O — Wildungsmauer ICPDR TNMN — Hainburg p N 0.05 (17–10) p N 0.05 (13–10) p N 0.05 (17–14) –

T4 H2O — Wildungsmauer ICPDR TNMN — Hainburg p N 0.05 (25–32) p N 0.05 (13–21) p N 0.05 (16–25) –
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implementation status of the ÖPUL program, these results are also
applicable to the rest of Austria. Therefore, the contribution of the
changes in diffuse emissions to determining such a steep decline of
the in-stream TP concentration can be regarded as unimportant.

As a result, the only convincing explanation for the sharp and endur-
ingdecline of TP concentration in theDanube after theflood is a reduced
mobilization of phosphorus within the river, resulting from a combined
effect of the strong event and lower point emissions. It can be hypothe-
sized that the flood intensely scoured the river bed, removing the pool
of phosphorus primarily embedded in algaemass. Although algae repre-
sent a minor fraction of the total stream sediments, their average phos-
phorus content is considerably higher than that of soil particles, the first
being approximately 1–2% (Borchardt and Azad, 1968; Benedini and
Tsakiris, 2013) and the latter ranging between 0.02–1.14% (Koljonen
and Darnley, 1994; Noll et al., 2009). This explains the strong reduction
of TP concentration without significant changes in the total SS. As a
result of point discharge reduction, the lower availability of soluble
and easily available phosphorus hindered rapid algae growth, delaying
the regeneration of the internal stock, which clarifies the long duration
of the TP decline. These mechanisms are presented schematically in
Fig. 5.
Table 8
3.1.3. Comparison of major floods in 2002 and 2013
Fig. 6 presents the behavior of the TP concentration at the Outflow

during the August 2002 and June 2013 floods. In both events the TP con-
centration at a given discharge was higher during the rising limb of the
hydrograph and lower during the falling one. This pattern, well known
Table 7
Number of paired instantaneousflow and TP, SRP, and SS values for the Inflow, aftermerg-
ing the data sets.

Period Determinand Low
flows

Dry
cond.

Mid-range
flows

Moist
cond.

High
flows

T1 TP 14 17 15 19 5
SRP 8 14 12 14 4
SS 14 17 15 19 5

T2 TP 40 73 90 103 50
SRP 40 73 90 103 50
SS 40 73 90 103 50

T3 TP 93 66 32 45 10
SRP 93 66 32 45 10
SS 72 52 24 39 9

T4 TP 46 95 50 74 34
SRP 46 95 50 74 34
SS 22 47 25 37 16
as clockwise hysteresis effect (Bowes et al., 2005; House and Warwick,
1998; McDiffett et al., 1989), proves the high levels of mobilization
and short-term depletion effects that floods exert on the in-stream
phosphorus pool. Furthermore, at Extremely high flows themeanTP con-
centrationmeasured in 2013 (0.7mg L−1) was considerably lower than
it was in 2002 (1.4 mg L−1), despite the fact that the maximum daily
discharge of 10,570 m3 s−1 reached during the 2013 event was much
higher than the 10,116 m3 s−1 recorded in 2002. This supports the
hypothesis that there was an enduring decline in the internal phospho-
rus stock in the river. This is only a hypothesis, which should be tested
through further research. In this respect, the recent flood of 2013 pro-
vides an ideal opportunity for further investigations into the river to
compare the consequences of the two events.
3.2. Annual P loads

3.2.1. Inflow
If compared to the large variations found by Johnes (2007) and

Cassidy and Jordan (2011) in their study of different calculationmethods
and sampling frequencies, the annual TP loads calculated here present a
substantial consistency. This is primarily due to the combination of data
sets, with a consequent increase of the sample size, and also to the fact
that the Danube is a large river with less pronounced flow dynamics
than the smaller streams investigated in the aforementioned studies.
Number of paired instantaneous flow and TP, SRP, and SS values for the Outflow, after
merging the data sets.

Period Determinand Low
flows

Dry
cond.

Mid-range
flows

Moist
cond.

High
flows

Very
high
flows

Extr.
high
flows

T1 TP 10 36 17 33 9 0 0
SRP 7 33 15 29 8 0 0
SS 8 36 17 33 9 0 0

T2 TP 13 80 88 110 44 20 13
SRP 13 80 88 110 44 19 13
SS 13 80 88 110 44 19 13

T3 TP 29 53 39 59 20 3 0
SRP 29 48 36 55 20 3 0
SS 29 53 39 59 20 3 0

T4 TP 11 57 34 41 13 0 0
SRP 10 47 28 35 12 0 0
SS 11 57 34 41 13 0 0

T5 TP 0 771 1178 1119 601 46 48
SRP 0 852 1301 1175 603 46 48
SS – – – – – –



Fig. 2.Mean and 95% Confidence Interval of the total phosphorus concentration at each flow interval and time period at: 2a) the Inflow and 2b) the Outflow; significance level of the dif-
ference between mean values μ among time periods (Welch's t-test) are also shown. Statistically significant differences are indicated in bold.
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Nevertheless, a few notable discrepancies are also detected. As
depicted in Fig. 7, the results obtained with methods M2 — ICPDR and
M3 — Flow intervals are highly consistent, whereas M1 — Linear pre-
sents larger fluctuations within the period T2 (Jan. 1996–Flood
2002). All methods capture the episodic event of 1995 well, but
only M1 — Linear calculates a spike load in correspondence of the
flood of 1999, and none of them delivers a higher load in 2002. This
confirms that regular, low frequency monitoring is not a sufficient
basis on which to calculate loads in years with important flood
events. To obtain an indication of the extent of these underestima-
tions, M3 — Flow intervals was also applied with a correction to
take into account the high phosphorus concentrations at flood
events. The high flow levels were split into High flows, Very high
flows, and Extremely high flows, following the same procedure as for
the Outflow. The mean concentrations applied for these intervals in
each period were obtained by adapting the values calculated for
the Outflow, according to the relationship between the mean con-
centrations at Mid-range flows at the two locations. Although this
calculation is prone to large uncertainties, its outcomes are highly
consistent with all methods for the year 1995 and with M1 — Linear
in 1999, and in addition they present the expected higher load in
2002

Despite the abovementioned discrepancies, all results depict the
same trend, composed of relatively high and fluctuating loads until
2002, followed by a sudden fall in 2003 and by a stable low level there-
after. The calculations published by ICPDR since 2000 show a similar
pattern, with two remarkable exceptions in the years 2005 and 2006,
for which no plausible explanation could be found.

As shown in Fig. 8, until the year 2002, therewas a strong correspon-
dence between peaks of annual TP load and peaks of maximum daily
discharge. Afterwards maximum discharges as high or even higher
than pre-2002 were recorded, but were no longer coupled with high
TP loads. The mean annual discharge after 2002 was slightly lower
than in the period 1995–2002, but not lower than in the time prior to
1995. It can be concluded that the low level of annual TP loads after
2002 was not caused by an alteration of the hydrological regime, but



Fig. 3.Mean and 95%Confidence Interval of the soluble reactive phosphorus concentration at eachflow interval and time period at: 3a) the Inflow and 3b) theOutflow; significance level of
the difference between mean values μ among time periods (Welch's t-test) are also shown. Statistically significant differences are indicated in bold.
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instead by reduced mobilization of phosphorus in the river. This sup-
ports the hypothesis that a depletion of the internal stock occurred as
a result of the flood and that its delayed regeneration was a conse-
quence of the reduced discharges of soluble phosphorus.

3.2.2. Outflow
As shown in Fig. 9, during theperiod T2,M1— Linear andM2— ICPDR

show more pronounced fluctuations than M3 — Flow intervals, because
the latter applies an averagemean concentration over thewhole period,
whereas the other methods only consider the concentrations measured
in each year. The largest discrepancy affects the load transported in
2002. Whereas M2 — ICPDR and M3 — Flow intervals lead to the same
result, the outcome of M1 — Linear is twice as high, because it includes
a stratified data set combined with the linear approximation of the
algorithm.

The results altogether present the same trend that was observed for
the Inflow, namely high and fluctuating loads until 2002, followed by a
collapse in 2003 and a long-lasting low level thereafter. The year 2013
presents a renewed high load, expected due to the major flood in
June, but still lower than the loads in 1999 and 2002. These results are
consistent with the calculations published by ICPDR, with exception of
2002, for which ICPDR estimated a much lower load, because it did
not include the data collected during the flood event.

As observed for the Inflow, the patterns of annual riverine TP loads
and of maximum discharges were clearly decoupled after 2002
(Fig. 10). In 2009 the two curves show again a simultaneous peak, but
whereas themaximum discharge is even higher than the ones recorded
before 2002, the TP load is still considerably lower. The same consider-
ation holds true, although to a smaller degree, for the comparison
between 2002 and 2013.

In Fig. 10 the developments of riverine TP loads are further com-
pared to total phosphorus emissions from the German and Austrian
catchments. These were estimated using the results and background
information of Zessner et al. (2011a) as a basis. Their detailed calculation



Fig. 4.Mean and 95% Confidence Interval of the suspended sediment concentration at each flow interval and time period at: 4a) the Inflow and 4b) the Outflow; significance level of the
difference between mean values μ among time periods (Welch's t-test) are also shown. Statistically significant differences are indicated in bold.
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of the emissions for the average period 2001–2006 was adjusted on a
yearly scale in consideration of the development of point emissions in
Germany (TMLNU, 2009) and Austria (BMLFUW, 1996, 2008, 2012).
Therefore, they reflect the decreasing trend of point emissions during
the 1990s. However, they fail to capture the fluctuations of diffuse emis-
sions linked to extreme hydrological conditions, in that the average value
for the period 2001–2006 was kept constant for the whole time series,
except for a 10% increment of the emissions related to erosion processes
before the launch of the agri-environmental program ÖPUL in 2000
(Zessner et al., 2011b).

With this limitation in mind, the comparison of the two time series
still offers an interesting insight into the mechanisms and drivers regu-
lating the behavior of phosphorus in the river. For the 1990s decade,
two observations can be made. Firstly, despite the reduction of point
emissions and the decline of TP and SRP baseflow concentrations,
there was no decreasing trend of riverine loads. Secondly, the loads
were considerably lower than the total input from the catchments,
which means that, provided that the discrepancy is not due to an over-
estimation of the emissions, large amounts of phosphoruswere retained
every year by the river. In 1999 and 2002, years characterized by flood
events, the peaks of TP loadswere either equal to or exceeded the emis-
sions. Nonetheless, these peaks did not transport the pool retained dur-
ing the previous decade downstream, which was instead presumably
exported to river banks and flooded areas. After 2002 the retention pro-
cess resumed its major role, with riverine loads notably lower than total
emissions, until 2013, when it was offset oncemore by themobilization
exerted by a large flood.

This examination highlights and confirms the relevance of the reten-
tion process, which creates a large pool of phosphorus distributed
among flooded areas, river banks and bed sediments, which is only par-
tially transported downstream during episodic storm events. Moreover,
it brings more evidence of the important role played by themobilizable



Fig. 5. Schematic illustration of themain processes affecting the phosphorus in-stream pool during the observed time series: a) initial pool during the 1990s; b) transport andmobilization
during high flows andminor flood events; c) small depletion of phosphorus rich sediments and high levels of dissolved phosphorus emissions; d) quick recovery of in-stream pool due to
high availability of soluble reactive phosphorus for algae growth; a′) initial pool before 2002 flood; b′) transport and mobilization during 2002 flood; c′) strong depletion of in-stream
phosphorus rich sediments and low dissolved phosphorus emissions; d′) slow recovery of in-stream pool due to low availability of soluble reactive phosphorus for algae growth.
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in-stream phosphorus stock. Its presence during the 1990s hampered
the direct translation of the reduction of point discharges and TP
and SRP baseflow concentrations into a decline of riverine TP loads.
Reversely, after the 2002 flood, the depletion of such reservoir led to
long-term low riverine loads, despite the occurrence ofmoderate floods.
Fig. 6. TP concentration measured at the Outflow at ascending and descend
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Fig. 7. Time series of annual TP loads at the Inflow, obtained with 3 diffe
This can be further illustrated by a simple calculation. Since point emis-
sions represent the primary pathway of phosphorus at baseflow condi-
tions, it can be expected that their reduction would cause a decline in
the loads transported at these flow levels. The average yearly TP point
emissions within the period T1 (Jan. 1991–Dec. 1995), T2 (Jan. 1996–
ing discharges during: 5a) August 2002 flood and 5b) June 2013 flood.
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Fig. 8. Time series of annual TP river loads, maximum daily discharge and mean daily discharge at the Inflow.
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Aug. 2002), T3 (Sep. 2002–Dec. 2007), and T4 (Jan. 2008–Dec. 2012)
were around 7000, 3100, 2000, and 1700 t TP, respectively. For each of
these periods three yearly loads are calculated, assuming a constant
mean value of Low-flows (950 m3 s−1), Dry conditions (1300 m3 s−1)
andMid-range flows (1750m3 s−1),multiplied by themean TP concen-
tration at the corresponding flow interval and time period. Themean of
these loads is then calculated, obtaining the following average values for
the periods T1, T2, T3, and T4: 5000 t, 3500 t, 2300 t, and 2400 t respec-
tively. The comparison of these loads with the point emissions shows an
expected decline in both, but not to the same extent, which indicates
that considerable retention took place in the period T1, most likely in
the form of algae growth. Moreover, both baseflow loads in the periods
T1 and T2 are substantially lower than the actual loads calculated includ-
ing all flow levels; in T3 this difference reaches its minimum, and in T4
they diverge again. This further shows that the mobilization of particu-
late phosphorus at high flow levels played a major role in determining
the total loads during the 1990s, whilst after the 2002 flood its con-
tribution dramatically declined and only slowly started to regain its
relevance.

4. Conclusions

The first and rather predictable outcomeof this study is that the con-
centration of TP and SRP in theUpper Danube decreased substantially at
baseflow conditions during the 1990s, thanks to the efforts undertaken
by Germany and Austria to reduce point emissions.

The time series analysis, however, has revealed an even more pro-
nounced and unexpected decline of the TP concentration following
the major flood in August 2002. Interestingly, this reduction was very
significant even in high flow conditions, and lasted for a long period of
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Fig. 9. Time series of annual TP loads at the Outflow, obtained with 3 diffe
time. Such decline was also reflected by the transported TP loads,
despite the fact that mean and maximum discharges presented almost
no variation before and after the 2002 flood. The validity of these results
is strengthened by the fact that the two locations in the study showed
very similar and consistent patterns, both in terms of concentrations
and loads.

These findings bring new evidence of the significant impact that
flood events can exert not only on the episodic transport of riverine
loads, but also on the in-stream phosphorus stock and its propensity
to mobilization. The existence of a mobilizable pool of phosphorus in
the river, built up through the sedimentation of phosphorus rich algae
mass, sustained during the 1990s a high level of annual riverine loads,
neutralizing the efforts of reduction of point discharges. It was only
after the August 2002 flood which removed the richest fraction of this
pool, that such efforts were translated into lower long-term loads, in
that they slowed down the growth of algae and therefore delayed the
regeneration of the stock.

It is thus crucial to better understand and to consider more
thoroughly the role that retention, floods and in-stream stocks play in
altering the phosphorus mobilization in rivers, either by interfering or
amplifying the anthropogenically induced changes. This is highly rele-
vant both for the improvement of river basin models and for the correct
interpretation of water quality data in relation to the assessment of
environmental management measures.

This study also highlights the usefulness of analyzing shifts in phos-
phorus concentration as a function of flow level, which offers insight
into the different drivers and processes.

Lastly, itflags thevalueof interrogating long-term and low frequency
water quality data sets that, as argued by Burt et al. (2011), should not
be dismissed in favor of more recent semi-continuous monitoring, but
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128 O. Zoboli et al. / Science of the Total Environment 518–519 (2015) 117–129
considered instead as a complementary and valuable source of informa-
tion to investigate long-term patterns and mechanisms.
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